如圖,在△ABC中,∠ACB=90°,AB=5cm,BC=3cm,CD⊥AB與D.
求:(1)AC的長;
(2)△ABC的面積;
(3)CD的長.
(1)在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,
AC=
AB2-BC2
=4cm
(2)S△ABC=
1
2
AC•BC=6cm2;
(3)∵CD⊥AB
∴S△ABC=
1
2
AC•BC=
1
2
AB•CD
∴CD=2.4cm.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

有一個(gè)面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個(gè)小正方形,其中,三個(gè)正方形圍成的三角形是直角三角形.再經(jīng)過一次“生長”后,變成了右圖,如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”.請(qǐng)你算出“生長”了n次后形成的圖形中所有正方形的面積和是( 。
A.nB.n+1C.n2D.(n+1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC中,AB=4,∠ABC=30°,∠ACB=45°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,以Rt△ABC的三邊為直角邊分別向外作等腰直角三角形.若AB=5,則圖中陰影部分的面積為(  )
A.6B.
25
4
C.
25
2
D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

李老師在與同學(xué)進(jìn)行“螞蟻怎樣爬最近”的課題研究時(shí)設(shè)計(jì)了以下三個(gè)問題,請(qǐng)你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點(diǎn)A沿著正方體表面爬到點(diǎn)C1處;
(2)如圖2,正四棱柱的底面邊長為5cm,側(cè)棱長為6cm,一只螞蟻從正四棱柱底面上的點(diǎn)A沿著棱柱表面爬到C1處;
(3)如圖3,圓錐的母線長為4cm,圓錐的側(cè)面展開圖如圖4所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點(diǎn)A出發(fā),沿圓錐側(cè)面爬行一周回到點(diǎn)A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,A、B是4×5網(wǎng)格中的格點(diǎn),網(wǎng)格中的每個(gè)小正方形的邊長都是1,圖中使以A、B、C為頂點(diǎn)的三角形是等腰三角形的格點(diǎn)C有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,長方形ABCD中,AB=4,BC=3,將其沿直線MN折疊,使點(diǎn)C與點(diǎn)A重合,則CN的長為( 。
A.
7
2
B.
25
8
C.
27
8
D.
15
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,小強(qiáng)在江南岸選定建筑物A,并在江北岸的B處觀察,此時(shí),視線與江岸BE所成的夾角是30°,小強(qiáng)沿江岸BE向東走了500m,到C處,再觀察A,此時(shí)視線AC與江岸所成的夾角∠ACE=60°.根據(jù)小強(qiáng)提供的信息,你能測(cè)出江寬嗎?若能,寫出求解過程(結(jié)果可保留根號(hào));若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,則MN的長是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案