年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例
我們可以取直角梯形ABCD的一腰CD的中點(diǎn)P,過點(diǎn)P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因?yàn)樵谔菪蜛BCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個(gè)四邊形,進(jìn)而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個(gè)平行四邊形,而且還是一個(gè)特殊的平行四邊形——矩形.
1.圖2中,矩形ABEF的面積是 ;(用含a,b,c的式子表示)
2.類比圖2的剪拼方法,請(qǐng)你就圖3(其中AD∥BC)和圖4(其中AB∥DC)的兩種情形分別畫出剪拼成一個(gè)平行四邊形的示意圖.
3.小明通過探究后發(fā)現(xiàn):在一個(gè)四邊形中,只要有一組對(duì)邊平行,就可以剪拼成平行四邊形.
如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進(jìn)行剪切,拼成一個(gè)平行四邊形?若能,請(qǐng)你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡(jiǎn)要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.如:平行四邊形的一條對(duì)線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長(zhǎng)DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過點(diǎn)A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫出面積等分線,并給出證明;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年河北邯鄲市畢業(yè)生升學(xué)模擬考試數(shù)學(xué)試卷(二) 題型:解答題
如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例
我們可以取直角梯形ABCD的一腰CD的中點(diǎn)P,過點(diǎn)P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因?yàn)樵谔菪蜛BCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個(gè)四邊形,進(jìn)而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個(gè)平行四邊形,而且還是一個(gè)特殊的平行四邊形——矩形.
1.圖2中,矩形ABEF的面積是 ;(用含a,b,c的式子表示)
2.類比圖2的剪拼方法,請(qǐng)你就圖3(其中AD∥BC)和圖4(其中AB∥DC)的兩種情形分別畫出剪拼成一個(gè)平行四邊形的示意圖.
3.小明通過探究后發(fā)現(xiàn):在一個(gè)四邊形中,只要有一組對(duì)邊平行,就可以剪拼成平行四邊形.
如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進(jìn)行剪切,拼成一個(gè)平行四邊形?若能,請(qǐng)你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡(jiǎn)要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(江蘇無錫) 題型:解答題
如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.如:平行四邊形的一條對(duì)線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長(zhǎng)DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過點(diǎn)A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫出面積等分線,并給出證明;若不能,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com