【題目】12分)如圖,ABC內(nèi)接于O,AB=AC,BD為O的弦,且ABCD,過(guò)點(diǎn)A作O的切線AE與DC的延長(zhǎng)線交于點(diǎn)E,AD與BC交于點(diǎn)F.

(1)求證:四邊形ABCE是平行四邊形;

(2)若AE=6,CD=5,求OF的長(zhǎng).

【答案】(1)證明見(jiàn)試題解析;(2)

【解析】

試題(1)根據(jù)切線的性質(zhì)證明EAC=ABC,根據(jù)等腰三角形等邊對(duì)等角的性質(zhì)和等量代得到EAC=ACB,從而根據(jù)內(nèi)錯(cuò)角相等兩直線平行的判定得到AEBC,結(jié)合已知ABCD即可判定四邊形ABCD是平行四邊形;

(2)連接AO,交BC于點(diǎn)H,雙向延長(zhǎng)OF分別交AB,CD于點(diǎn)N,M,根據(jù)切割線定理求得EC=4,證明四邊形ABDC是等腰梯形,根據(jù)對(duì)稱性、圓周角定理和垂徑定理的綜合應(yīng)用證明OFH∽△DMF∽△BFN,并由勾股定理列式求解即可.

試題解析:(1)AE與O相切于點(diǎn)A,∴∠EAC=ABC,AB=AC,∴∠ABC=ACB,∴∠EAC=ACB,AEBC,ABCD,四邊形ABCE是平行四邊形;

(2)如圖,連接AO,交BC于點(diǎn)H,雙向延長(zhǎng)OF分別交AB,CD與點(diǎn)N,M,AE是O的切線,由切割線定理得,AE2=ECDE,AE=6,CD=5,62=CE(CE+5),解得:CE=4,(已舍去負(fù)數(shù)),由圓的對(duì)稱性,知四邊形ABDC是等腰梯形,且AB=AC=BD=CE=4,又根據(jù)對(duì)稱性和垂徑定理,得AO垂直平分BC,MN垂直平分AB,DC,設(shè)OF=x,OH=Y,F(xiàn)H=z,AB=4,BC=6,CD=5,BF=BC﹣FH=3﹣z,DF=CF=BC+FH=3+z,易得OFH∽△DMF∽△BFN,,,即,, ,+得:,÷得:,解得,,,x=,OF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為60/件的T恤,規(guī)定試銷期間單價(jià)不低于成本單價(jià),又獲利不得高于40%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元/件)符合一次函數(shù)ykx+b,且x=70時(shí),y=50;x=80時(shí),y=40;

(1)求出一次函數(shù)ykx+b的解析式

(2)若該商場(chǎng)獲得利潤(rùn)為w元,試寫出利潤(rùn)w與銷售單價(jià)x之間的關(guān)系式,銷售單價(jià)定為多少時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù) y=﹣x2+bx+c 的圖象經(jīng)過(guò) A(1,0),B(0,﹣3)兩點(diǎn).

(1)求這個(gè)拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)設(shè)該二次函數(shù)的對(duì)稱軸與 x 軸交于點(diǎn) C,連接 BABC,求ABC 的面積.

(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn) P,使得 O、BC、P 四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出 P 點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知在等邊三角形ABC中,點(diǎn)D、E分別是AB、BC延長(zhǎng)線上的點(diǎn),且BD=CE,直線CD與AE相交于點(diǎn)F.

(1)求證:DC=AE;

(2)求證:AD2=DCDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(4,3),(3,0).

(1)求b、c的值;

(2)求出該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸,并在所給坐標(biāo)系中畫(huà)出該函數(shù)的圖象;

(3)該函數(shù)的圖象經(jīng)過(guò)怎樣的平移得到y=x2的圖象?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠BCA=90°,ACBC,點(diǎn)DBC的中點(diǎn),點(diǎn)F在線段AD上,DFCD,BFCAE點(diǎn),過(guò)點(diǎn)ADA的垂線交CF的延長(zhǎng)線于點(diǎn)G,下列結(jié)論:CF2EFBF;②AG=2DC;③AEEF;④AFECEFEB.其中正確的結(jié)論有( 。

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點(diǎn)PB出發(fā)沿BAA運(yùn)動(dòng),速度為每秒1cm,點(diǎn)E是點(diǎn)BP為對(duì)稱中心的對(duì)稱點(diǎn),點(diǎn)P運(yùn)動(dòng)的同時(shí),點(diǎn)QA出發(fā)沿ACC運(yùn)動(dòng),速度為每秒2cm,當(dāng)點(diǎn)Q到達(dá)頂點(diǎn)C時(shí),P,Q同時(shí)停止運(yùn)動(dòng),設(shè)P,Q兩點(diǎn)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),PQBC?

(2)設(shè)四邊形PQCB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;

(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由;

(4)當(dāng)t為何值時(shí),△AEQ為等腰三角形?(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問(wèn)題:

(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫出yx的函數(shù)關(guān)系式,并求出自變量x的取值范圍;

(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+c經(jīng)過(guò)A(﹣6,0)、B(2,0)、C(0,6)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過(guò)點(diǎn)Py軸的垂線,垂足為點(diǎn)E,連接AE

(1)求拋物線的函數(shù)解析式,并寫出頂點(diǎn)D的坐標(biāo);

(2)如果點(diǎn)P的坐標(biāo)為(x,y),PAE的面積為S,求Sx之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;

(3)過(guò)點(diǎn)P(﹣3,m)作x軸的垂線,垂足為點(diǎn)F,連接EF,把PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P,求出P的坐標(biāo).(直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案