(2013•達州)如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,點D在BC上,以AC為對角線的所有?ADCE中,DE最小的值是( �。�
分析:由平行四邊形的對角線互相平分、垂線段最短知,當OD⊥BC時,DE線段取最小值.
解答:解:∵在Rt△ABC中,∠B=90°,AB=3,BC=4,
∴AC=
AB2+BC2
=5.
∵四邊形ADCE是平行四邊形,
∴OD=OE,OA=OC=2.5.
∴當OD取最小值時,DE線段最短,此時OD⊥BC.
∴OD=
1
2
AB=1.5,
∴ED=2OD=3.
故選B.
點評:本題考查了平行四邊形的性質(zhì),以及垂線段最短.解答該題時,利用了“平行四邊形的對角線互相平分”的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•達州)如圖,一條公路的轉(zhuǎn)變處是一段圓�。ḿ磮D中弧CD,點O是弧CD的圓心),其中CD=600米,E為弧CD上一點,且OE⊥CD,垂足為F,OF=300
3
米,則這段彎路的長度為( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•達州)如圖,折疊矩形紙片ABCD,使B點落在AD上一點E處,折痕的兩端點分別在AB、BC上(含端點),且AB=6,BC=10.設(shè)AE=x,則x的取值范圍是
2≤x≤6
2≤x≤6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•達州)如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點A1,得∠A1;∠A1BC和∠A1CD的平分線交于點A2,得∠A2;…∠A2012BC和∠A2012CD的平分線交于點A2013,則∠A2013=
m
22013
m
22013
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•達州)如圖,在平面直角坐標系中,直線AB交x軸于點A(5,0),交y軸于點B,AO是⊙M的直徑,其半圓交AB于點C,且AC=3.取BO的中點D,連接CD、MD和OC.
(1)求證:CD是⊙M的切線;
(2)二次函數(shù)的圖象經(jīng)過點D、M、A,其對稱軸上有一動點P,連接PD、PM,求△PDM的周長最小時點P的坐標;
(3)在(2)的條件下,當△PDM的周長最小時,拋物線上是否存在點Q,使S△QAM=
16
S△PDM?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案