如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成2個面積相等的扇形,小王與小李利用他們來做決定獲勝與否的游戲,規(guī)定小王轉(zhuǎn)甲轉(zhuǎn)盤一次,小李轉(zhuǎn)乙轉(zhuǎn)盤一次為一次游戲(當(dāng)指針指在邊界線上是視為無效,重轉(zhuǎn))
(1)小王說:“如果兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)之和為6或7,則我獲勝,否則你獲勝.”小王的設(shè)計規(guī)則公平嗎?并說明理由;
(2)請你為小王和小李玩的這種轉(zhuǎn)盤游戲設(shè)計一種公平的游戲規(guī)則,并說明理由.

解:(1)這種游戲規(guī)則不公平.理由如下:
畫樹狀圖如下:
共有6種等可能的結(jié)果,其中數(shù)子之和為6或7占4種,
∴小王獲勝的概率==,小李獲勝的概率==,

∴游戲不公平.
(2)游戲規(guī)則:如果兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)的和不大于6,則小王獲勝;否則小李獲勝;
分析:(1)先畫樹狀圖展示所有6種等可能的結(jié)果,其中數(shù)子之和為6或7占4種,根據(jù)概率的概念可分別計算出小王獲勝的概率,小李獲勝的概率,然后比較大小即可得到游戲不公平;
(2)游戲規(guī)則只要使小王獲勝的概率等于小李獲勝的概率即可.
點評:本題考查了游戲的公平性,利用列表法或樹狀圖法展示所有等可能的結(jié)果,然后根據(jù)概率的概念分別計算出游戲各方獲勝的概率,比較概率的大小即可判斷游戲的公平性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形、乙轉(zhuǎn)盤被分成2個面積相等的扇形.小夏和小秋利用它們來做決定獲勝與否的游戲.規(guī)定小夏轉(zhuǎn)甲盤一次、小秋轉(zhuǎn)乙盤一次為一次游戲(當(dāng)指針指在邊界線上時視為無效,重轉(zhuǎn)).
(1)小夏說:“如果兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)之和為6或7,則我獲勝;否則你獲勝”.按小夏設(shè)計的規(guī)則,請你寫出兩人獲勝的可能性分別是多少?
(2)請你對小夏和小秋玩的這種游戲設(shè)計一種公平的游戲規(guī)則,并用一種合適精英家教網(wǎng)的方法(例如:樹狀圖,列表)說明其公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標(biāo)有相應(yīng)的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時,重轉(zhuǎn)一次,直到指針指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法,求出點(x,y)落在第二象限內(nèi)的概率;
(2)直接寫出點(x,y)落在函數(shù)y=-
1x
圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,△ABC中,AB=AC,∠A=36°,DE垂直平分AB,△BEC的周長為20,BC=9精英家教網(wǎng)
①求∠ABC的度數(shù); ②求△ABC的周長
(2)如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成2個面積相等的扇形,小王與小李利用他們來做決定獲勝與否的游戲,規(guī)定小王轉(zhuǎn)甲轉(zhuǎn)盤一次,小李轉(zhuǎn)乙轉(zhuǎn)盤一次為一次游戲(當(dāng)指針指在邊界線上時視為無效,重轉(zhuǎn)).
①小王說:“如果兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)之和為6或7,則我獲勝,否則你獲勝.”小王的設(shè)計規(guī)則,這種游戲規(guī)則公平嗎?并說明理由;精英家教網(wǎng)
②請你為小王和小李玩的這種轉(zhuǎn)盤游戲設(shè)計一種公平的游戲規(guī)則,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形、乙轉(zhuǎn)盤被分成2個面積相等的扇形.分別轉(zhuǎn)甲盤、乙盤各一次(當(dāng)指針指在邊界線上時視為無效,重轉(zhuǎn)),請指出兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)之和為奇數(shù)的概率是多少,并用樹狀圖或列表說明.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成2個半圓,每一個扇形或半圓都標(biāo)有相應(yīng)的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時,重轉(zhuǎn)一次,直到指針指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法,列出所有等可能情況,并求出點(x,y)落在坐標(biāo)軸上的概率;
(2)直接寫出點(x,y)落在以坐標(biāo)原點為圓心,2為半徑的圓內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案