如圖,AB是半圓的直徑,CD是這個半圓的切線,C是切點,且∠ACD=30°,下列四個結論中不正確的是( 。
A.AB=2ACB.AB2=AC2+BC2
C.BC=
3
AC
D.AB=
2
BC

∵CD是切線,
∴∠DCA=∠B=30°
∵AB是直徑,
∴∠ACB=90°.
∴AB2=AC2+BC2,AC=ABsin30°=
1
2
AB,BC=ABcos30°=
3
2
AB.
∵AB=2AC,BC=
3
AC.
∴A,B,C均正確,D錯誤.
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,半徑OC⊥AB,D為AB延長線上一點,過D作⊙O的切線,E為切點,連接CE交AB于點F.
(1)求證:DE=DF;
(2)連AE,若OF=1,BF=3,求DE長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA與⊙O相切,切點為A,PO交⊙O于點C,點B是優(yōu)弧CBA上一點,若∠ABC=32°,則∠P的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PE是⊙O的切線,E為切點,PAB、PCD是割線,AB=35,CD=50,AC:DB=1:2,則PA=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點E是正方形ABCD的邊CD上一點,以A為圓心,AB為半徑的弧與BE交于點F,則∠EFD=______°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是⊙O的內(nèi)接正方形,延長AB到E,使BE=AB,連接CE.
(1)求證:直線CE是⊙O的切線;
(2)連接OE交BC于點F,若OF=2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB=AC=10,BC=12,P是劣弧BC的中點,過點P作⊙O的切線交AB延長線于點D.
(1)求證:DPBC;
(2)求DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=120°,AC=BC,AB=6,O為AB的中點,且以O為圓心的半圓與AC,BC分別相切于點D,E;
(1)求半圓O的半徑;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在以點O為圓心的兩個同心圓中,大圓的半徑OA與小圓相交于點B,AC與小圓相切于點C,OC的延長線與大圓相交于點D,AC與BD相交于點E.
求證:(1)BD是小圓的切線;
(2)CE:AE=OC:OD.

查看答案和解析>>

同步練習冊答案