請(qǐng)寫出一個(gè)二次函數(shù),使它同時(shí)具有如下性質(zhì):
①圖象關(guān)于直線對(duì)稱;②當(dāng)x=2時(shí),y>0;③當(dāng)x=-2時(shí),y<0.
答:           
答案不唯一,如

試題分析:根據(jù)二次函數(shù)的性質(zhì)依次分析各小題的要求即可得到結(jié)果.
答案不唯一,如
點(diǎn)評(píng):二次函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),是中考常見題,一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一拋物線經(jīng)過點(diǎn)A、B、C,點(diǎn) A(?2,0),點(diǎn)B(0,4),點(diǎn)C(4,0),該拋物線的頂點(diǎn)為D.

(1)求該拋物線的解析式及頂點(diǎn)D坐標(biāo);
(2)如圖,若P為線段CD上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAB的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo);
(3)過拋物線頂點(diǎn)D,作DE⊥x軸于E點(diǎn),F(xiàn)(m,0)是x軸上一動(dòng)點(diǎn),若以BF為直徑的圓與線段DE有公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線=-+5經(jīng)過點(diǎn)C(4,0),與軸交于另一點(diǎn)A,與軸交于點(diǎn)B.

(1)求點(diǎn)A、B的坐標(biāo);
(2)P是軸上一點(diǎn),△PAB是等腰三角形,試求P點(diǎn)坐標(biāo);
(3)若·Q的半徑為1,圓心Q在拋物線上運(yùn)動(dòng),當(dāng)·Q與軸相切時(shí),求·Q上的點(diǎn)到點(diǎn)B的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A、D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O).

(1)求此拋物線的解析式;
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R;
①求證:PF=PR
②是否存在點(diǎn)P,使得△PFR為等邊三角形;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為點(diǎn)S,試判斷△RSF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且.點(diǎn)E為線段BC上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B,C重合),以E為頂點(diǎn)作,射線ET交線段OB于點(diǎn)F.

(1) 求出此拋物線函數(shù)表達(dá)式,并直接寫出直線BC的解析式;
(2)求證:
(3)當(dāng)為等腰三角形時(shí),求此時(shí)點(diǎn)E的坐標(biāo);
(4)點(diǎn)P為拋物線的對(duì)稱軸與直線BC的交點(diǎn),點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以點(diǎn)A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)D為x軸上位于點(diǎn)A右邊的某一點(diǎn),點(diǎn)B為直線上的一點(diǎn),以點(diǎn)A、B、D為頂點(diǎn)作正方形.

(1)若圖①僅看作符合條件的一種情況,求出所有符合條件的點(diǎn)D的坐標(biāo);
(2)在圖①中,若點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度沿直線從點(diǎn)O移動(dòng)到點(diǎn)B,與此同時(shí)點(diǎn)Q以相同的速度從點(diǎn)A出發(fā)沿著折線A-B-C移動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)兩點(diǎn)停止運(yùn)動(dòng).試探究:在移動(dòng)過程中,△PAQ的面積最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+2與x軸的交點(diǎn)是A(3,0)、B(6,0),與y軸的交點(diǎn)是C.

(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PQ∥y軸交直線BC于點(diǎn)Q.
①當(dāng)x取何值時(shí),線段PQ長(zhǎng)度取得最大值?其最大值是多少?
②是否存在點(diǎn)P,使△OAQ為直角三角形?若存在,求點(diǎn)P坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

大潤(rùn)發(fā)超市進(jìn)了一批成本為8元/個(gè)的文具盒. 調(diào)查發(fā)現(xiàn):這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià)x(元/個(gè))的關(guān)系如圖所示:

(1)求這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)每個(gè)文具盒的定價(jià)是多少元時(shí),超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤(rùn)為1200元?
(3)若該超市每星期銷售這種文具盒的銷售量不少于115個(gè),且單件利潤(rùn)不低于4元(x為整數(shù)),當(dāng)每個(gè)文具盒定價(jià)多少元時(shí),超市每星期利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)與一次函數(shù)的圖象交于,則能使成立的的取值范圍是
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案