精英家教網(wǎng)如圖,已知Rt△ABC中,∠BCA=90°,∠B=30°,AB=2,若以A為圓心,AC為半徑的
CD
交AB于D,則
CD
和線段CB、DB所圍成圖形的面積為
 
.(結(jié)果保留π)
分析:根據(jù)直角三角形的兩個銳角互余,求得∠A=60°.根據(jù)直角三角形的性質(zhì),求得AC和BC的長,則陰影部分的面積即為直角三角形的面積減去扇形的面積.
解答:解:∵∠BCA=90°,∠B=30°,AB=2,
∴∠A=60°,AC=1,BC=
3

∴陰影部分的面積=
1
2
×1×
3
-
60π×1
360
=
3
2
-
π
6
點(diǎn)評:此題綜合運(yùn)用了直角三角形的性質(zhì)和扇形的面積公式.直角三角形中,30°所對的直角邊是斜邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,BD的垂直平分線分別交AB,BC于點(diǎn)E、F,CD=CG.
(1)請以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個菱形和兩個等腰梯形.那么,構(gòu)成菱形的四個頂點(diǎn)是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個頂點(diǎn)是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請你各選擇其中一個圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點(diǎn),PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長;
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊答案