【題目】觀察下列一組圖形中點的個數(shù),其中第1個圖中共有4個點,第2個圖中共有10個點,第3個圖中共有19個點,,按此規(guī)律第100個圖中共有點的個數(shù)是

A. 15151B. 15152C. 15153D. 15154

【答案】A

【解析】

由圖可知:其中第1個圖中共有1+1×3=4個點,第2個圖中共有1+1×3+2×3=10個點,第3個圖中共有1+1×3+2×3+3×3=19個點,…,由此規(guī)律得出第n個圖有1+1×3+2×3+3×3++3n個點.

1個圖中共有1+1×3=4個點,第2個圖中共有1+1×3+2×3=10個點,第3個圖中共有1+1×3+2×3+3×3=19個點,…

n個圖有1+1×3+2×3+3×3++3n= 個點.

所以第100個圖中共有點的個數(shù)是1+1×3+2×3+3×3+4×3++100×3 ==15151

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則在①a<0,②b>0,③c<0,④b2﹣4ac>0中錯誤的個數(shù)為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種型號汽車油箱容量為40L,每行駛100km耗油10L.設一輛加滿油的該型號汽車行駛路程為x(km),行駛過程中油箱內剩余油量為y(L)

(1)求yx之間的函數(shù)表達式;

(2)為了有效延長汽車使用壽命,廠家建議每次加油時油箱內剩余油量不低于油箱容量的四分之一,按此建議,求該輛汽車最多行駛的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點F,NE⊥AB于點E.

(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點,(1)中的兩個結論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關系并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù) yl= x ( x 0 ) , x > 0 )的圖象如圖所示,則結論: 兩函數(shù)圖象的交點A的坐標為(3 ,3 ) x > 3 時, x 1時, BC = 8

x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結論的序號是_ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角梯形OABC中,CBOA,∠COA90°,CB3OA6,BA3.分別以OAOC邊所在直線為x軸、y軸建立如圖1所示的平面直角坐標系.

1)求點B的坐標;

2)已知D、E分別為線段OC、OB上的點,OD5,OE2EB,直線DEx軸于點F,過點EEGx軸于G,且EGOG2.求直線DE的解析式;

3)點M是(2)中直線DE上的一個動點,在x軸上方的平面內是否存在另一點N,使以O、D、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為支援災區(qū),某校愛心活動小組準備用籌集的資金購買A、B兩種型號的學習用品共1000件.已知B型學習用品的單價比A型學習用品的單價多10元,用180元購買B型學習用品的件數(shù)與用120元購買A型學習用品的件數(shù)相同.

1)求A、B兩種學習用品的單價各是多少元?

2)若購買這批學習用品的費用不超過28000元,則最多購買B型學習用品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點O位于坐標原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1= (x>0)的圖象上,頂點B在函數(shù)y2= (x>0)的圖象上,∠ABO=30°,則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A4,a),B(﹣2,﹣4)是一次函數(shù)ykx+b的圖象和反比例函數(shù)y的圖象的交點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積.

查看答案和解析>>

同步練習冊答案