如圖①,已知四邊形ABCD是正方形,點E是AB的中點,點F在邊CB的延長線上,且BE=BF,連接EF.
(1)若取AE的中點P,求證:BP=
12
CF;
(2)在圖①中,若將△BEF繞點B順時針方向旋轉(zhuǎn)α(0<α<360°),如圖②,是否存在某位置,使得AE∥BF?若存在,求出所有可能的旋轉(zhuǎn)角α的大;若不存在,請說明理由.
分析:(1)設(shè)正方形的邊長為4a,則BE=AE=2a,由BE=BF得到BF=2a,所以CF=6a,由點P為AE的中點得EP=a,則BP=3a,由此得到BP=
1
2
CF;
(2)由(1)得到BE=BF=
1
2
AB,∠EBF=90°,當(dāng)AE∥BF時,則∠AEB=∠EBF=90°,所以∠BAE=30°,則∠ABE=60°,即α=60°,易得α=300°時,AE∥BF.
解答:(1)證明:設(shè)正方形的邊長為4a,
∵點E是AB的中點,
∴BE=AE=2a,
∵BE=BF,
∴BF=2a,
∴CF=4a+2a=6a,
∵點P為AE的中點,
∴EP=a,
∴BP=2a+a=3a,
∴BP=
1
2
CF;

(2)存在.
∵AE∥BF,
而BE=BF=
1
2
AB,∠EBF=90°,
∴∠AEB=∠EBF=90°,
∴∠BAE=30°,
∴∠ABE=60°,即α=60°,
當(dāng)△BEF繞點B逆時針方向旋轉(zhuǎn)60°時,AE∥BF,此時α=300°,
∴旋轉(zhuǎn)角α為60°或300°.
點評:本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了正方形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀與理解:
三角形的中線的性質(zhì):三角形的中線等分三角形的面積,
即如圖1,AD是△ABC中BC邊上的中線,
S△ABD=S△ACD=
1
2
S△ABC

理由:∵BD=CD,∴S△ABD=
1
2
BD×AH=
1
2
CD×AH=S△ACD
=
1
2
S△ABC
,
即:等底同高的三角形面積相等.
操作與探索
在如圖2至圖4中,△ABC的面積為a.
(1)如圖2,延長△ABC的邊BC到點D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
 
(用含a的代數(shù)式表示);
(2)如圖3,延長△ABC的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
 
(用含a的代數(shù)式表示),并寫出理由;
(3)在圖3的基礎(chǔ)上延長AB到點F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖4).若陰影部分的面積為S3,則S3=
 
(用含a的代數(shù)式表示).
精英家教網(wǎng)
拓展與應(yīng)用
如圖5,已知四邊形ABCD的面積是a,E、F、G、H分別是AB、BC、CD的中點,求圖中陰影部分的面積?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知四邊形ABCD是菱形,G是線段CD上的任意一點時,連接BG交AC于F,過F作FH∥CD交BC于H,可以證明結(jié)論
FH
AB
=
FG
BG
成立.(考生不必證明)
(1)探究:如圖2,上述條件中,若G在CD的延長線上,其它條件不變時,其結(jié)論是否成立?若成立,請給出證明;若不成立,請說明理由;
(2)計算:若菱形ABCD中AB=6,∠ADC=60°,G在直線CD上,且CG=16,連接BG交AC所在的直線于F,過F作FH∥CD交BC所在的直線于H,求BG與FG的長.
(3)發(fā)現(xiàn):通過上述過程,你發(fā)現(xiàn)G在直線CD上時,結(jié)論
FH
AB
=
FG
BG
還成立嗎?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,將面積為3的直角三角形AGO沿直線y=x翻折,得到三角形CHO,連接AC,已知反比例函數(shù)y=
kx
(x>0)
的圖象過A、C兩點,如圖①.
(1)k的值是
 
;
(2)在直線y=x圖象上任取一點D,作AB⊥AD,AC⊥CB,線段OD交AC于點F,交AB于點E,P為直線OD上一動點,連接PB、PC、CE.
㈠如圖②,已知點A的橫坐標(biāo)為1,當(dāng)四邊形AECD為正方形時,求三角形PBC的面積;
㈡如圖③,若已知四邊形PEBC為菱形,求證四邊形PBCD是平行四邊形;
㈢若D、P兩點均在直線y=x上運動,當(dāng)∠ADC=60°,且三角形PBC的周長最小時,請直接寫出三角形PBC與四邊形ABCD的面積之比.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•太原一模)如圖1,已知四邊形ABCD是正方形,對角線AC、BD相交于點E,以點E為頂點作正方形EFGH,使點A、D分別在EH和EF上,連接BH、AF.
(1)判斷并說明BH和AF的數(shù)量關(guān)系;
(2)將正方形EFGH繞點E順時針方向旋轉(zhuǎn)θ(0°≤θ≤360°),設(shè)AB=a,EH=b,且a<2b.
①如圖2,連接AG,設(shè)AG=x,請直接寫出x的取值范圍;當(dāng)x取最大值時,直接寫出θ的值;
②如果四邊形ABDH是平行四邊形,請在備用圖中補全圖形,并求a與b的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將已知四邊形分別在格點圖中補成關(guān)于已知直線:l、m、n、p為對稱軸的軸對稱的圖形.

查看答案和解析>>

同步練習(xí)冊答案