(1)探索:解下列方程,將得到的兩根x1,x2和x1+x2,x1-x2的值填入下面的表格.
 方程 x1  x2   x1+x2  x1-x2
 x2+3x-4=0        
 2x2+x-1=0        
 3x2-5x+2=0        
(2)猜想:x1+x2,x1-x2的值與一元二次方程ax2+bx+c=0(a≠0)(x1,x2是其兩個根)的各項系數(shù)a,b,c之間有何關系?
(3)利用一元二次方程的求根公式證明(2)中的猜想.
(1)
方程    x1 x2 x1+x2 x1•x2
x2+3x-4=0 -4  1 -3 -4
2x2+x-1=0   
1
2
-1 -
1
2
-
1
2
3x2-5x+2=0   
2
3
 1     
5
3
  
2
3
(2)根與系數(shù)的關系為:x1+x2=-
b
a
,x1x2=
c
a


(3)對于方程:ax2+bx+c=0(a≠0,且a,b,c是常數(shù)),當△≥0時,利用求根公式,得
x1=
-b
2a
+
b2-4ac
2a
,x2=
-b
2a
-
b2-4ac
2a

x1+x2=
-b
2a
+
b2-4ac
2a
+
-b
2a
-
b2-4ac
2a
=-
b
a
,
x1x2=(
-b
2a
+
b2-4ac
2a
)•(
-b
2a
-
b2-4ac
2a
)=(
-b
2a
2-(
b2-4ac
2a
2=
c
a

∴x1+x2=-
b
a
,x1x2=
c
a
是正確的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)探索:解下列方程,將得到的兩根x1,x2和x1+x2,x1•x2的值填入下面的表格.
 方程 x1  x2   x1+x2  x1•x2
 x2+3x-4=0        
 2x2+x-1=0        
 3x2-5x+2=0        
(2)猜想:x1+x2,x1•x2的值與一元二次方程ax2+bx+c=0(a≠0)(x1,x2是其兩個根)的各項系數(shù)a,b,c之間有何關系?
(3)利用一元二次方程的求根公式證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(1)探索:解下列方程,將得到的兩根x1,x2和x1+x2,x1•x2的值填入下面的表格.
方程x1 x2 x1+x2 x1•x2
x2+3x-4=0
2x2+x-1=0
3x2-5x+2=0
(2)猜想:x1+x2,x1•x2的值與一元二次方程ax2+bx+c=0(a≠0)(x1,x2是其兩個根)的各項系數(shù)a,b,c之間有何關系?
(3)利用一元二次方程的求根公式證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年江蘇省宿遷市沐陽縣中英文中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:解答題

(1)探索:解下列方程,將得到的兩根x1,x2和x1+x2,x1•x2的值填入下面的表格.
 方程x1 x2  x1+x2 x1•x2
 x2+3x-4=0    
 2x2+x-1=0    
 3x2-5x+2=0    
(2)猜想:x1+x2,x1•x2的值與一元二次方程ax2+bx+c=0(a≠0)(x1,x2是其兩個根)的各項系數(shù)a,b,c之間有何關系?
(3)利用一元二次方程的求根公式證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年安徽省巢湖市和縣二中九年級(上)第一次月考數(shù)學試卷(解析版) 題型:解答題

(1)探索:解下列方程,將得到的兩根x1,x2和x1+x2,x1•x2的值填入下面的表格.
 方程x1 x2  x1+x2 x1•x2
 x2+3x-4=0    
 2x2+x-1=0    
 3x2-5x+2=0    
(2)猜想:x1+x2,x1•x2的值與一元二次方程ax2+bx+c=0(a≠0)(x1,x2是其兩個根)的各項系數(shù)a,b,c之間有何關系?
(3)利用一元二次方程的求根公式證明(2)中的猜想.

查看答案和解析>>

同步練習冊答案