精英家教網 > 初中數學 > 題目詳情

某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看做一次函數:y=-10x+500.
(1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?(6分)
(2)如果李明想要每月獲得2 000元的利潤,那么銷售單價應定為多少元?(3分)
(3)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2 000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量) (3分)

(1)35;(2)30或40;(3)3600.

解析試題分析:(1)由題意得,每月銷售量與銷售單價之間的關系可近似看作一次函數,根據利潤=(定價-進價)×銷售量,從而列出關系式;(2)令w=2000,然后解一元二次方程,從而求出銷售單價;(3)根據函數解析式,利用一次函數的性質求出最低成本即可.
試題解析:(1)由題意得出: ,
,
∴當銷售單價定為35元時,每月可獲得最大利潤.
(2)由題意,得:,
解這個方程得:x1=30,x2=40.
∴李明想要每月獲得2000元的利潤,銷售單價應定為30元或40元.
(3)∵,∴拋物線開口向下. ∴當30≤x≤40時,W≥2000.
∵x≤32,∴當30≤x≤32時,W≥2000.
設成本為P(元),由題意,得:,
∵k=200<0,∴P隨x的增大而減。
∴當x=32時,P最小=3600.
答:想要每月獲得的利潤不低于2000元,每月的成本最少為3600元.
考點:二次函數的應用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(點A在點B的左側)。

(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O、B、F、G四點為頂點的四邊形是平行四邊形,如果存在,請求出點G的坐標,如果不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖1,已知拋物線y=ax2+bx(a≠0)經過A(3,0)、B(4,4)、D(2, n)三點.

(1)求拋物線的解析式及點D坐標;
(2)點M是拋物線對稱軸上一動點,求使BM-AM的值最大時的點M的坐標;
(3)如圖2,將射線BA沿BO翻折,交y軸于點C,交拋物線于點N,求點N的坐標;
(4)在(3)的條件下,連結ON,OD,如圖2,請求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,直線y=x+3與坐標軸分別交于A,B兩點,拋物線y=ax2+bx﹣3a經過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關于拋物線的對稱軸MN對稱.


(1)求拋物線的解析式及頂點C的坐標;
(2)求證:四邊形ABCD是直角梯形.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在平面直角坐標系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).

(1)請直接寫出點B,C的坐標:B(  ,  ),C(  ,  );
(2)求經過A,B,C三點的拋物線解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A,B兩點重合的動點),并使ED所在直線經過點C.此時,EF所在直線與(2)中的拋物線交于第一象限的點M.當AE=2時,拋物線的對稱軸上是否存在點P使△PEM是等腰三角形,若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知二次函數的圖象經過點A(6,0)、B(﹣2,0)和點C(0,﹣8).

(1)求該二次函數的解析式;
(2)設該二次函數圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為   ;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數關系式,并寫出自變量t的取值范圍;
③設S0是②中函數S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線y=ax2+bx(a>0)經過原點O和點A(2,0).

(1)寫出拋物線的對稱軸與x軸的交點坐標;
(2)點(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大。
(3)點B(﹣1,2)在該拋物線上,點C與點B關于拋物線的對稱軸對稱,求直線AC的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線與x軸交與點A(1,0)與點B, 且過點C(0,3),

(1)求該拋物線的解析式;
(2)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?,若存在,求出點P的坐標及△PBC的面積最大值.若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。

(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標。

查看答案和解析>>

同步練習冊答案