如圖,直線與坐標(biāo)軸分別交于點(diǎn)A、B,與直線y=x交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過(guò)點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過(guò)程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).

(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?

(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?

(3)當(dāng)t為多少秒時(shí),矩形PEFQ的面積S最大?并求出最大值.

 

【答案】

解:(1)∵直線與坐標(biāo)軸分別交于點(diǎn)A、B,

∴x=0時(shí),y=4;y=0時(shí),x=8!郆O=4,AO=8!。

當(dāng)t秒時(shí),QO=FQ=t,則EP=t,

∵EP∥BO,∴△ABO∽△ARP。∴,即。

∴AP=2t。

∵動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),

∴點(diǎn)P運(yùn)動(dòng)的速度是每秒2個(gè)單位長(zhǎng)度。

(2)∵當(dāng)OP=OQ時(shí),PE與QF重合,此時(shí)t=,當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),

∴分0<t<<t≤4兩種情況討論:

如圖1,當(dāng)0<t<。即點(diǎn)P在點(diǎn)Q右側(cè)時(shí),若PQ=PE,矩形PEFQ為正方形,

∵OQ=FQ=t,PA=2t,

∴QP=8-t-2t=8-3t。

∴8-3t=t。

解得:t=2。

如圖2,當(dāng)<t≤4,即點(diǎn)P在點(diǎn)Q左側(cè)時(shí),若PQ=PE,矩形PEFQ為正方形,∵OQ=t,PA=2t,∴OP=8-2t。

。

解得:t=4。

∴當(dāng)t為2秒或4秒時(shí),矩形PEFQ為正方形。

(3)同(2)分0<t<<t≤4兩種情況討論:

如圖1,當(dāng)0<t<時(shí),Q在P點(diǎn)的左邊

∵OQ=t,PA=2t,∴QP=8-t-2t=8-3t,

。

∴當(dāng)t=時(shí),S的最大值為,

如圖2,當(dāng)<t≤4時(shí),Q在P點(diǎn)的右邊,

∵OQ=t,PA=2t,∴。

∵當(dāng)<t≤4時(shí),S隨t的增大而增大,∴t=4時(shí),S的最大值為:3×42﹣8×4=16。

綜上所述,當(dāng)t=4時(shí),S的最大值為:16。

【解析】

試題分析:(1)根據(jù)直線與坐標(biāo)軸分別交于點(diǎn)A、B,得出A,B點(diǎn)的坐標(biāo),再利用EP∥BO,得出,據(jù)此可以求得點(diǎn)P的運(yùn)動(dòng)速度。

(2)當(dāng)PQ=PE時(shí),以及當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,分別求出即可。

(3)根據(jù)(2)中所求得出S與t的函數(shù)關(guān)系式,從而利用二次函數(shù)性質(zhì)求出即可。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知直線PA是一次函數(shù)y=x+m(m>0)的圖象,直線PB是一次函數(shù)y=-3x+n(n>m)的圖象,點(diǎn)P是兩直線的交點(diǎn),點(diǎn)A、B、C、Q分別是兩條直線與坐標(biāo)軸的交點(diǎn).
(1)用m、n分別表示點(diǎn)A、B、P的坐標(biāo)及∠PAB的度數(shù);
(2)若四邊形PQOB的面積是
112
,且CQ:AO=1:2,試求點(diǎn)P的坐標(biāo),并求出直線PA與PB的函數(shù)表達(dá)式;
(3)在(2)的條件下,是否存在一點(diǎn)D,使以A、B、P、D為頂點(diǎn)的四邊形是平行四邊形?若存在,求精英家教網(wǎng)出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011內(nèi)蒙古赤峰,24,12分)如圖,直線y=x+3與坐標(biāo)軸分別交于A、B兩點(diǎn),拋物線經(jīng)過(guò)點(diǎn)A、B,頂點(diǎn)為C,連結(jié)CB并延長(zhǎng)交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱。
(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東青島市八年級(jí)下學(xué)期期末考試數(shù)學(xué)卷(帶解析) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象,點(diǎn)P是兩直線的交點(diǎn),點(diǎn)A、B、C、Q分別是兩條直線與坐標(biāo)軸的交點(diǎn)。

(1)用分別表示點(diǎn)A、B、P的坐標(biāo)及∠PAB的度數(shù);
(2)若四邊形PQOB的面積是,且CQ:AO=1:2,試求點(diǎn)P的坐標(biāo),并求出直線PA與PB的函數(shù)表達(dá)式;
(3)在(2)的條件下,是否存在一點(diǎn)D,使以A、B、P、D為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆山東青島市八年級(jí)下學(xué)期期末考試數(shù)學(xué)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象,點(diǎn)P是兩直線的交點(diǎn),點(diǎn)A、B、C、Q分別是兩條直線與坐標(biāo)軸的交點(diǎn)。

  (1)用分別表示點(diǎn)A、B、P的坐標(biāo)及∠PAB的度數(shù);

  (2)若四邊形PQOB的面積是,且CQ:AO=1:2,試求點(diǎn)P的坐標(biāo),并求出直線PA與PB的函數(shù)表達(dá)式;

  (3)在(2)的條件下,是否存在一點(diǎn)D,使以A、B、P、D為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(廣東佛山卷)數(shù)學(xué) 題型:解答題

(2011內(nèi)蒙古赤峰,24,12分)如圖,直線y=x+3與坐標(biāo)軸分別交于A、B兩點(diǎn),拋物線經(jīng)過(guò)點(diǎn)A、B,頂點(diǎn)為C,連結(jié)CB并延長(zhǎng)交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱。

(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);

(2)求證:四邊形ABCD是直角梯形。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案