【題目】(本小題滿(mǎn)分11分)已知∠ABC=90°,D是直線(xiàn)AB上的點(diǎn),AD=BC.
(1)如圖1,過(guò)點(diǎn)A作AF⊥AB,并截取AF=BD,連接DC、DF、CF,判斷△CDF的形狀并證明;
(2)如圖2,E是直線(xiàn)BC上一點(diǎn),且CE=BD,直線(xiàn)AE、CD相交于點(diǎn)P,∠APD的度數(shù)是一個(gè)固定的值嗎?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說(shuō)明理由.
【答案】見(jiàn)解析
【解析】(1)△CDF是等腰直角三角形,(1分)
理由如下:
∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,(2分)
在△FAD與△DBC中,,∴△FAD≌△DBC(SAS),(3分)
∴FD=DC,∴△CDF是等腰三角形,(4分)
∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形.(5分)
(2)作AF⊥AB于A,使AF=BD,連接DF,CF,如圖,
∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
在△FAD與△DBC中,,
∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,(6分)
∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形,(7分)
∴∠FCD=45°,(8分)
∵AF∥CE,且AF=CE,∴四邊形AFCE是平行四邊形,(10分)
∴AE∥CF,∴∠APD=∠FCD=45°.(11分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x1,x2是一元二次方程x2+x﹣3=0的兩個(gè)根,則x1+x2﹣x1x2的值為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解答問(wèn)題:
定義:線(xiàn)段AD把等腰三角形ABC分成△ABD與△ACD(如圖1),如果△ABD與△ACD均為等腰三角形,那么線(xiàn)段AD叫做△ABC的完美分割線(xiàn).
(1)如圖1,已知△ABC中,AB=AC,∠BAC=108°,AD為△ABC的完美分割線(xiàn),且BD<CD,則∠B= , ∠ADC=.
(2)如圖2,已知△ABC中,AB=AC,∠A=36°,BE為△ABC的角平分線(xiàn),求證:BE為△ABC完美分割線(xiàn).
(3)如圖3,已知△ABC是一等腰三角形紙片,AB=AC,AD是它的一條完美分割線(xiàn),將△ABD沿直線(xiàn)AD折疊后,點(diǎn)B落在點(diǎn)B1處,AB1交CD于點(diǎn)E,求證:DB1=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,用量角器度量幾個(gè)角的度數(shù),下列結(jié)論中正確的是( )
A.∠BOC=60°
B.∠COA是∠EOD 的余角
C.∠AOC=∠BOD
D.∠AOD與∠COE互補(bǔ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單項(xiàng)式xay3與﹣4xy4﹣b是同類(lèi)項(xiàng),那么a﹣b的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:AB⊥BC,DC⊥BC,E在BC上,AB=EC,BE=CD,EF⊥AD于F.
(1)求證:F是AD中點(diǎn);
(2)求∠AEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題
(1)已知n正整數(shù),且 ,求 的值;
(2)如圖,AB、CD交于點(diǎn)O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A>∠B.
(1)用直尺和圓規(guī)作AB的垂直平分線(xiàn),交AB與D,交BC于E;(不寫(xiě)作法,保留作圖痕跡)
(2)在(1)的條件下,若CE=DE,求∠A,∠B的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com