精英家教網 > 初中數學 > 題目詳情
(2006•梅州)如圖,點A在拋物線y=x2上,過點A作與x軸平行的直線交拋物線于點B,延長AO,BO分別與拋物線y=-x2相交于點C,D,連接AD,BC,設點A的橫坐標為m,且m>0.
(1)當m=1時,求點A,B,D的坐標;
(2)當m為何值時,四邊形ABCD的兩條對角線互相垂直;
(3)猜想線段AB與CD之間的數量關系,并證明你的結論.

【答案】分析:(1)根據題意得點A的坐標是將x=1代入即可,根據對稱性可得點B的坐標,即可得OB的解析式,與二次函數的解析式組成方程組即可求得點D的坐標;
(2)當四邊形ABCD的兩對角線互相垂直時,由對稱性得直線AO與x軸的夾角等于45°所以點A的縱、橫坐標相等,根據點A在二次函數y=x2上,即可求得m的值;
(3)根據題意求得點A,B的坐標,求得AC的長與BD的解析式,即可求得點D與C的坐標,求得CD的長,可得CD=2AB.
解答:解:(1)∵點A在拋物線y=x2上,且x=m=1,
∴A(1,),(1分)
∵點B與點A關于y軸對稱,
∴B(-1,).(2分)
設直線BD的解析式為y=kx,
∴k=-,
∴y=-x.(3分)
解方程組,
得D(2,-).(4分)

(2)當四邊形ABCD的兩對角線互相垂直時,
由對稱性得直線AO與x軸的夾角等于45°
所以點A的縱、橫坐標相等,(5分)
這時,
設A(a,a),代入y=x2,
得a=4,
∴A(4,4),
∴m=4.
即當m=4時,四邊形ABCD的兩條對角線互相垂直.(7分)

(3)線段CD=2AB.(8分)
證明:∵點A在拋物線y=x2,且x=m,
∴A(m,m2),
得直線AO的解析式為y=x,
解方程組,
得點C(-2m,-)(9分)
由對稱性得點B(-m,m2),D(2m,-m2),(10分)
∴AB=2m,CD=4m,
∴CD=2AB.(11分)
點評:此題考查了二次函數與一次函數的綜合知識,要注意對稱性質的應用,要注意數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2006•梅州)如圖,點A在拋物線y=x2上,過點A作與x軸平行的直線交拋物線于點B,延長AO,BO分別與拋物線y=-x2相交于點C,D,連接AD,BC,設點A的橫坐標為m,且m>0.
(1)當m=1時,求點A,B,D的坐標;
(2)當m為何值時,四邊形ABCD的兩條對角線互相垂直;
(3)猜想線段AB與CD之間的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2010年湖南省長沙市黃花中學中考數學模擬試卷(一)(解析版) 題型:解答題

(2006•梅州)如圖,點A在拋物線y=x2上,過點A作與x軸平行的直線交拋物線于點B,延長AO,BO分別與拋物線y=-x2相交于點C,D,連接AD,BC,設點A的橫坐標為m,且m>0.
(1)當m=1時,求點A,B,D的坐標;
(2)當m為何值時,四邊形ABCD的兩條對角線互相垂直;
(3)猜想線段AB與CD之間的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2006年全國中考數學試題匯編《一次函數》(07)(解析版) 題型:解答題

(2006•梅州)如圖,直線l的解析式為y=x+4,l與x軸,y軸分別交于點A,B.
(1)求原點O到直線l的距離;
(2)有一個半徑為1的⊙C從坐標原點出發(fā),以每秒1個單位長的速度沿y軸正方向運動,設運動時間為t(秒).當⊙C與直線l相切時,求t的值.

查看答案和解析>>

科目:初中數學 來源:2006年廣東省梅州市中考數學試卷(解析版) 題型:解答題

(2006•梅州)如圖是某文具店在2005年賣出供學生使用的甲、乙、丙三種品牌科學記算器個數的條形統(tǒng)計圖,試解答下面問題:
(1)求賣出甲、乙、丙三種科學記算器的個數的頻率;
(2)根據以上統(tǒng)計結果,請你為該文具店進貨提出一條合理化建議.

查看答案和解析>>

同步練習冊答案