用長(zhǎng)度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖①②③中的一種)
精英家教網(wǎng)
設(shè)豎檔AB=x米,請(qǐng)根據(jù)以上圖案回答下列問(wèn)題:(題中的不銹鋼材料總長(zhǎng)度均指各圖中所有黑線的長(zhǎng)度和,所有橫檔和豎檔分別與AD、AB平行)
(1)在圖①中,如果不銹鋼材料總長(zhǎng)度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積為3平方米?
(2)在圖②中,如果不誘鋼材料總長(zhǎng)度為12米,當(dāng)x為多少時(shí),矩形架ABCD的面積S最大?最大面積是多少?
(3)在圖③中,如果不銹鋼材料總長(zhǎng)度為a米,共有n條豎檔,那么當(dāng)x為多少時(shí),矩形框架ABCD的面積S最大?最大面積是多少?
分析:(1)先用含x的代數(shù)式(12-3x)÷3=4-x表示橫檔AD的長(zhǎng),然后根據(jù)矩形的面積公式列方程,求出x的值.
(2)用含x的代數(shù)式(12-4x)÷3=4-
4
3
x表示橫檔AD的長(zhǎng),然后根據(jù)矩形面積公式得到二次函數(shù),利用二次函數(shù)的性質(zhì),求出矩形的最大面積以及對(duì)應(yīng)的x的值.
(3)用含x的代數(shù)式(a-nx)÷3=
a
3
-
n
3
x表示橫檔AD的長(zhǎng),然后根據(jù)矩形的面積公式得到二次函數(shù),利用二次函數(shù)的性質(zhì),求出矩形的最大面積以及對(duì)應(yīng)的x的值.
解答:解:(1)AD=(12-3x)÷3=4-x,
列方程:x(4-x)=3,
x2-4x+3=0,
∴x1=1,x2=3,
答:當(dāng)x=1或3米時(shí),矩形框架ABCD的面積為3平方米;

(2)AD=(12-4x)÷3=4-
4
3
x,
S=x(4-
4
3
x),
=-
4
3
x2+4x,
當(dāng)x=-
4
2×(-
4
3
)
=
3
2
時(shí),
S最大=
0-16
4×(-
4
3
)
=3,
答:當(dāng)x=
3
2
時(shí),矩形架ABCD的面積S最大,最大面積是3平方米;

(3)AD=(a-nx)÷3=
a
3
-
n
3
x,
S=x(
a
3
-
n
3
x),
=-
n
3
x2+
a
3
x,
當(dāng)x=-
a
3
2×(-
n
3
)
=
a
2n
時(shí)
S最大=
-
a2
9
4×(-
n
3
)
=
a2
12n

答:當(dāng)x=
a
2n
時(shí),矩形ABCD的面積S最大,最大面積是
a2
12n
平方米.
點(diǎn)評(píng):本題考查的是二次函數(shù)的應(yīng)用,(1)根據(jù)面積公式列方程,求出x的值.(2)根據(jù)面積公式得二次函數(shù),利用二次函數(shù)的性質(zhì)求最值.(3)根據(jù)面積公式得到字母系數(shù)的二次函數(shù),然后求出函數(shù)的最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河北區(qū)三模)用長(zhǎng)度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖①②③中的一種)(題中的不銹鋼材料總長(zhǎng)度均指各圖中所有黑線的長(zhǎng)度和,所有橫檔和豎檔分別與AD、AB平行,材料本身面積忽略不計(jì)),設(shè)豎檔AB=x米,請(qǐng)根據(jù)以上圖案回答下列問(wèn)題:

(Ⅰ)在圖①中,不銹鋼材料總長(zhǎng)度為12米,則AD表達(dá)式為
4-x
4-x
,若矩形框架ABCD的面積為3平方米,則可列方程為
x(4-x)=3
x(4-x)=3

(Ⅱ)在圖②中,不銹鋼材料總長(zhǎng)度為12米,則AD表達(dá)式為
4-
4
3
x
4-
4
3
x
,若矩形框架ABCD的面積為S,請(qǐng)寫(xiě)出S與x的函數(shù)關(guān)系式
S=4x-
4
3
x2
S=4x-
4
3
x2

(Ⅲ)在圖③中,如果不銹鋼材料總長(zhǎng)度為a米,共有n條豎檔,寫(xiě)出矩形框架ABCD的面積S與x的函數(shù)關(guān)系式
a-nx
3
x
a-nx
3
x
;當(dāng)x為
a
2n
a
2n
時(shí),S有最大面積等于
a2
12n
a2
12n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)用長(zhǎng)度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖1,2中的一種).

設(shè)豎檔AB=x米,請(qǐng)根據(jù)以上圖案回答下列問(wèn)題:(題中的不銹鋼材料總長(zhǎng)度均指各圖中所有黑線的長(zhǎng)度和,所有橫檔和豎檔分別與AD,AB平行)
(Ⅰ)在圖1中,如果不銹鋼材料總長(zhǎng)度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積為3平方米?
(Ⅱ)在圖2中,如果不銹鋼材料總長(zhǎng)度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河?xùn)|區(qū)一模)用長(zhǎng)度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖)現(xiàn)已知不銹鋼材料總長(zhǎng)度為12米,請(qǐng)你幫助分析,當(dāng)豎檔為多少米時(shí),矩形框架的面積最大?最大面積是多少平方米?(題中的不銹鋼材料總長(zhǎng)度指圖中所有線段的長(zhǎng)度和,所有橫檔和豎檔分別與AD、AB平行)
為了使同學(xué)們更好地解答本題,我們提供了一種分析問(wèn)題的方法,你可以依照這個(gè)方法按要求完成本題的解答.也可以選用其他方法,按照解答題的一般要求進(jìn)行解答即可.
(I)分析:
設(shè)豎檔為x米,矩形框架的面積為y平方米.
根據(jù)問(wèn)題中的數(shù)量關(guān)系.用含x的式子填表:
AB的長(zhǎng)(米) AD的長(zhǎng)(米) 矩形框架ABCD的面積(平方米)
x y
(Ⅱ) (由以上分析,用含x的式子表示y,并求出問(wèn)題的解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年天津市河北區(qū)中考數(shù)學(xué)三模試卷(解析版) 題型:解答題

用長(zhǎng)度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖①②③中的一種)(題中的不銹鋼材料總長(zhǎng)度均指各圖中所有黑線的長(zhǎng)度和,所有橫檔和豎檔分別與AD、AB平行,材料本身面積忽略不計(jì)),設(shè)豎檔AB=x米,請(qǐng)根據(jù)以上圖案回答下列問(wèn)題:

(Ⅰ)在圖①中,不銹鋼材料總長(zhǎng)度為12米,則AD表達(dá)式為_(kāi)_____,若矩形框架ABCD的面積為3平方米,則可列方程為_(kāi)_____.
(Ⅱ)在圖②中,不銹鋼材料總長(zhǎng)度為12米,則AD表達(dá)式為_(kāi)_____,若矩形框架ABCD的面積為S,請(qǐng)寫(xiě)出S與x的函數(shù)關(guān)系式______.
(Ⅲ)在圖③中,如果不銹鋼材料總長(zhǎng)度為a米,共有n條豎檔,寫(xiě)出矩形框架ABCD的面積S與x的函數(shù)關(guān)系式______;當(dāng)x為_(kāi)_____時(shí),S有最大面積等于______.

查看答案和解析>>

同步練習(xí)冊(cè)答案