21、已知二次函數(shù)的關(guān)系式為y=x2+6x+8.
(1)求這個(gè)二次函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)當(dāng)x的取值范圍是
x<-3
時(shí),y隨x的增大而減。
分析:(1)用配方法將拋物線的一般式轉(zhuǎn)化為頂點(diǎn)式,確定頂點(diǎn)坐標(biāo)即可;
(2)求出二次函數(shù)的對(duì)稱軸,即可知道x取何值時(shí),y隨x的增大而減。
解答:解:(1)y=x2+6x+8=(x+3)2-1,
所以該函數(shù)圖象頂點(diǎn)坐標(biāo)為(-3,-1);

(2)有(1)知此二次函數(shù)的對(duì)稱軸為x=-3,
∵a=1>0,
∴當(dāng)x<-3時(shí),y隨x的增大而減小.
故答案為:x<-3.
點(diǎn)評(píng):本題考查了如何求二次函數(shù)的頂點(diǎn)坐標(biāo)以及它的增減性,求頂點(diǎn)坐標(biāo)可用配方法,也可以用頂點(diǎn)坐標(biāo)公式;二次函數(shù)的增減性和對(duì)稱軸有關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(6分)已知二次函數(shù)的關(guān)系式為y=x2+6x+8.

(1)求這個(gè)二次函數(shù)圖象的頂點(diǎn)坐標(biāo);

(2)當(dāng)x的取值范圍是    時(shí),y隨x的增大而減。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(6分)已知二次函數(shù)的關(guān)系式為y=x2+6x+8.
(1)求這個(gè)二次函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)當(dāng)x的取值范圍是  時(shí),y隨x的增大而減小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年南京市考數(shù)學(xué)一模試卷 題型:解答題

(6分)已知二次函數(shù)的關(guān)系式為y=x2+6x+8.

(1)求這個(gè)二次函數(shù)圖象的頂點(diǎn)坐標(biāo);

(2)當(dāng)x的取值范圍是    時(shí),y隨x的增大而減。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省連云港市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知二次函數(shù)的關(guān)系式為y=x2+6x+8.
(1)求這個(gè)二次函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)當(dāng)x的取值范圍是______時(shí),y隨x的增大而減。

查看答案和解析>>

同步練習(xí)冊(cè)答案