(x2+x+1)(x+2)
(x2-x-1)(x+1)
(x2+2x-1)(x-1)
(x2-2x+3)(x-2)
(a2+3a-2)(a+3)
(a2-3a+4)(a-3)
(a2+4a+1)(2a-1)
(a2-4a+2)(3a+2)
(2x2-3)(x+5)
【答案】分析:根據(jù)多項(xiàng)式乘以多項(xiàng)式的法則:多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式的每一項(xiàng)乘另外一個多項(xiàng)式的每一項(xiàng),再把所得的積相加,即(a+b)(m+n)=am+an+bm+bn,計(jì)算即可.
解答:解:(x2+x+1)(x+2)
=x3+2x2+x2+2x+x+2
=x3+3x2+3x+2;
(x2-x-1)(x+1)
=x3+x2-x2-x-x-1
=x3-2x-1;
(x2+2x-1)(x-1)
=x3-x2+2x2-2x-x+1
=x3+x2-3x+1;
(x2-2x+3)(x-2)
=x3-2x2-2x2+4x+3x-6
=x3-4x2+7x-6;
(a2+3a-2)(a+3)
=a3+3a2+3a2+9a-2a-6
=a3+6a2+7a-6;
(a2-3a+4)(a-3)
=a3-3a2-3a2+9a+4a-12
=a3-6a2+13a-12;
(a2+4a+1)(2a-1)
=2a3-a2+8a2-4a+2a-1
=2a3+7a2-2a-1;
(a2-4a+2)(3a+2)
=3a3+2a2-12a2-8a+6a+4
=3a3-10a2-2a+4;
(2x2-3)(x+5)
=2x3+10x2-3x-15.
點(diǎn)評:本題主要考查多項(xiàng)式乘以多項(xiàng)式的法則.注意不要漏項(xiàng),漏字母,有同類項(xiàng)的合并同類項(xiàng).