【題目】如圖,四邊形ABCO為矩形,點Ax軸上,點Cy軸上,且點B的坐標為(-1,2),將此矩形繞點O順時針旋轉90°得矩形DEFO,拋物線y=x2+bx+cB,E兩點.

1)求此拋物線的函數(shù)關系式;

2)將矩形ABCO向上平移,并且使此拋物線平分線段BC,求平移距離.

【答案】1;(2.

【解析】

1)用待定系數(shù)法即可解決問題.

2)設平移的距離為h,BC的中點為M,得出M的坐標,代入拋物線的解析式,求解即可.

1)由題意,點E的坐標為(2,1),則,解得:,∴此拋物線的解析式為

2)設平移的距離為h,平移后BC的中點為M,則C0,2+h),B(-1,2+h),M,2+h).

M在拋物線上,∴,解得:h=

答:平移距離為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,D、E分別是BCAC上的點,且BD=CE,ADBE相交于點P.下列結論:①AE=CD;②AD=BE;③AEB=ADC;④APE=60°.其中正確的結論共有( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組的6名同學在一次數(shù)學競賽中的成績分別是94分、98分、90分、94分、80分、74分,則下列結論正確的是( 。

A. 中位數(shù)是90B. 眾數(shù)是94

C. 平均分是91D. 方差是20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于反比例函數(shù),下列說法不正確的是( 。

A. 函數(shù)圖象分別位于第一、第三象限

B. x0時,yx的增大而減小

C. 若點Ax1y1),Bx2y2)都在函數(shù)圖象上,且x1x2,則y1y2

D. 函數(shù)圖象經(jīng)過點(1,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(觀察發(fā)現(xiàn)):(1)如圖1,四邊形ABCD和四邊形AEFG都是正方形,且點E在邊AB上,連接DEBG,猜想線段DEBG的數(shù)量關系和位置關系.(只要求寫出結論,不必說出理由)

(深入探究):(2)如圖2,將圖1中正方形AEFG繞點A逆時針旋轉一定的角度,其他條件與觀察發(fā)現(xiàn)中的條件相同,觀察發(fā)現(xiàn)中的結論是否還成立?請根據(jù)圖2加以說明.

(拓展應用):(3)如圖3,直線l上有兩個動點A、B,直線l外有一點動點Q,連接QAQB,以線段AB為邊在l的另一側作正方形ABCD,連接QD.隨著動點A、B的移動,線段QD的長也會發(fā)生變化,若QA,QB長分別為36保持不變,在變化過程中,線段QD的長是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角△ABC中,AB=5tanC=3,BDAC于點DBD=3,點P從點A出發(fā),以每秒1個單位長度的速度沿AB向終點B運動,過點PPEAC交邊BC于點E,以PE為邊作RtPEF,使∠EPF=90°,點F在點P的下方,且EFAB.設△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S0),點P的運動時間為t(秒)(t0).

1)直接寫出線段AC的長為

2)當△PEF與△ABD重疊部分圖形為四邊形時,求St之間的函數(shù)關系式,并寫出t的取值范圍.

3)若邊EF所在直線與邊AC交于點Q,連結PQ,如圖2,

①當PQ將△PEF的面積分成1:2兩部分時,求AP的長.

②直接寫出△ABC的某一頂點到P、Q兩點距離相等時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy,雙曲線y(x>0)與直線ykxk的交點為點A(m,2).

(1) k的值;

(2) x>0時,直接寫出不等式kx-k ≤的解集:_ ;

(3) 設直線ykxky軸交于點B,若Cx軸上一點,且滿足ABC的面積是4,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,ADC=60°,AB=BC=1,則下列結論:

①∠CAD=30°BD=S平行四邊形ABCD=ABACOE=ADSAPO=,正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1;

(2)分別連結AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

同步練習冊答案