【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-4,4),點(diǎn)B的坐標(biāo)為(0,2).

1)求直線(xiàn)AB的解析式;

2)以點(diǎn)A為直角頂點(diǎn)作∠CAD=90°,射線(xiàn)ACx軸的負(fù)半軸于點(diǎn)C,射線(xiàn)ADy軸的負(fù)半軸于點(diǎn)D.當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn)時(shí),OC-OD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍;

3)如圖2,點(diǎn)M-4,0)和N2,0)是x軸上的兩個(gè)點(diǎn),點(diǎn)P是直線(xiàn)AB上一點(diǎn).當(dāng)PMN是直角三角形時(shí),請(qǐng)求出滿(mǎn)足條件的所有點(diǎn)P的坐標(biāo).

【答案】1)直線(xiàn)AB的解析式為:y=-x+2;(2)(2)不變.理由見(jiàn)解析;(3)點(diǎn)P的坐標(biāo)為(-4,4)或(21)或(-,+2)或(-+2).

【解析】

1)設(shè)直線(xiàn)AB解析式為y=kx+b,把AB坐標(biāo)代入列出方程組,求出方程組的解得到kb的值,即可確定出直線(xiàn)AB解析式;

2)當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn)時(shí),OC-OD的值不變,理由為:過(guò)AAE垂直于x軸,AF垂直于y軸,利用同角的余角相等得到一對(duì)角相等,求出A的坐標(biāo)得到AE=AF,再由已知直角相等,利用ASA得到三角形AEC與三角形AFD全等,利用全等三角形對(duì)應(yīng)邊相等得到EC=FD,進(jìn)而求出OC-OD的值即可;

3)分三種情況考慮:①當(dāng)M為直角頂點(diǎn)時(shí);②N為直角頂點(diǎn)時(shí);③P為直角頂點(diǎn)時(shí);分別求出P坐標(biāo)即可.

1)設(shè)直線(xiàn)AB的解析式為:y=kx+bk≠0),

∵點(diǎn)A-4,4),點(diǎn)B0,2)在直線(xiàn)AB上,

,

解得:

∴直線(xiàn)AB的解析式為:y=-x+2;

2)不變.理由如下:

過(guò)點(diǎn)A分別作x軸,y軸的垂線(xiàn),垂足分別為EF(如答圖1),可得∠AEC=AFD=90°

又∵∠BOC=90°,

∴∠EAF=90°,即∠DAE+DAF=90°

∵∠CAD=90°,即∠DAE+CAE=90°

∴∠CAE=DAF,

A-4,4),

OE=AF=AE=OF=4,

AECAFD中,

,

∴△AEC≌△AFDASA),

EC=FD

OC-OD=OE+EC-FD-OF=OE+OF=8,

OC-OD的值不發(fā)生變化,值為8;

3)①當(dāng)M為直角頂點(diǎn)時(shí),點(diǎn)P的橫坐標(biāo)為-4,

∵點(diǎn)P在直線(xiàn)AB上,

x=-4代入y=-x+2得,y=4

∴點(diǎn)P的坐標(biāo)為P-4,4);

②當(dāng)N為直角頂點(diǎn)時(shí),點(diǎn)P的橫坐標(biāo)為2

∵點(diǎn)P在直線(xiàn)AB上,

x=2代入y=-x+2得,y=1,

∴點(diǎn)P的坐標(biāo)為P21);

③當(dāng)P為直角頂點(diǎn)時(shí),

∵點(diǎn)P在直線(xiàn)AB上,可設(shè)點(diǎn)P的坐標(biāo)為(x-x+2),

MP2=x+42+-x+22,NP2=x-22+-x+22,

RtPMN中,MP2+NP2=MN2,MN=6

∴(x+42+-x+22+x-22+-x+22=62,

解得:x1=-,x2=,

P-,+2)或(-+2),

綜上所述,滿(mǎn)足條件的所有點(diǎn)P的坐標(biāo)為(-44)或(2,1)或(-,+2)或(,-+2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線(xiàn)BEAC的延長(zhǎng)線(xiàn)于點(diǎn)E.

(1)求∠CBE的度數(shù);

(2)過(guò)點(diǎn)DDFBE,交AC的延長(zhǎng)線(xiàn)于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,三角形的三個(gè)頂點(diǎn)分別是, ,

(1)在所給的網(wǎng)格圖中,畫(huà)出這個(gè)平面直角坐標(biāo)系;

(2)點(diǎn)經(jīng)過(guò)平移后對(duì)應(yīng)點(diǎn)為,將三角形作同樣的平移得到三角形.

①畫(huà)出平移后的三角形

②若邊上一點(diǎn)經(jīng)過(guò)上述平移后的對(duì)應(yīng)點(diǎn)為,用含,的式子表示點(diǎn)的坐標(biāo);(直接寫(xiě)出結(jié)果即可)

③求三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉,經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.

1)直接寫(xiě)出當(dāng)0≤x≤300x300時(shí),yx的函數(shù)關(guān)系式;

2)廣場(chǎng)上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過(guò)乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用最少?最少總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)半徑為6的圓O上一點(diǎn)A作圓O的切線(xiàn)l,P為圓O的一個(gè)動(dòng)點(diǎn),作PH⊥l于點(diǎn)H,連接PA.如果PA=x,AH=y,那么下列圖象中,能大致表示y與x的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛出租車(chē)從超市(點(diǎn))出發(fā),向東走到達(dá)小李家(點(diǎn)),繼續(xù)向東走到達(dá)小張家(點(diǎn)),然后又回頭向西走到達(dá)小陳家(點(diǎn)),最后回到超市.

1)以超市為原點(diǎn),向東方向?yàn)檎较颍?/span>表示,畫(huà)出數(shù)軸,并在該數(shù)軸上表示、、的位置;

2)小陳家(點(diǎn))距小李家(點(diǎn))有多遠(yuǎn)?

3)若出租車(chē)收費(fèi)標(biāo)準(zhǔn)如下,以?xún)?nèi)包括收費(fèi)元,超過(guò)部分按每千米元收費(fèi),則從超市出發(fā)到回到超市一共花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種花卉,若購(gòu)進(jìn)甲種花卉20盆,乙種花卉50盆,需要900元;若購(gòu)進(jìn)甲種花卉40盆,乙種花卉30盆,需要960元.

(1)求購(gòu)進(jìn)甲、乙兩種花卉每盆各需多少元?

(2)該花店購(gòu)進(jìn)甲,乙兩種花卉共100盆,甲種花卉每盆售價(jià)20元,乙種花齊每盆售價(jià)16元,現(xiàn)該花店把100盆花卉全部售出,若獲利超過(guò)480元,則至少購(gòu)進(jìn)甲種花卉多少盆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2﹣2mx+4m﹣8

(1)當(dāng)x≤2時(shí),函數(shù)值y隨x的增大而減小,求m的取值范圍.
(2)以?huà)佄锞(xiàn)y=x2﹣2mx+4m﹣8的頂點(diǎn)A為一個(gè)頂點(diǎn)作該拋物線(xiàn)的內(nèi)接正三角形AMN(M,N兩點(diǎn)在拋物線(xiàn)上),請(qǐng)問(wèn):△AMN的面積是與m無(wú)關(guān)的定值嗎?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
(3)若拋物線(xiàn)y=x2﹣2mx+4m﹣8與x軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案