【題目】如圖1,在平面直角坐標(biāo)系中,直線l與x軸、y軸分別交于點B(4,0)、C(0,3),點A為x軸負(fù)半軸上一點,AM⊥BC于點M交y軸于點N,滿足4CN=5ON.已知拋物線y=ax2+bx+c經(jīng)過點A、B、C.

(1)求拋物線的函數(shù)關(guān)系式;
(2)連接AC,點D在線段BC上方的拋物線上,連接DC、DB,若△BCD和△ABC面積滿足SBCD= SABC , 求點D的坐標(biāo);
(3)如圖2,E為OB中點,設(shè)F為線段BC上一點(不含端點),連接EF.一動點P從E出發(fā),沿線段EF以每秒1個單位的速度運動到F,再沿著線段FC以每秒 個單位的速度運動到C后停止.若點P在整個運動過程中用時最少,請直接寫出最少時間和此時點F的坐標(biāo).

【答案】
(1)

解:∵C(0,3),

∴OC=3,

∵4CN=5ON,

∴ON= ,

∵∠OAN=∠NCM,

∴△AON∽△COB,

= ,即 = ,解得OA=1,

∴A(﹣1,0),

設(shè)拋物線解析式為y=a(x+1)(x﹣4),

把C(0,3)代入得a1(﹣4)=3,解得a=﹣ ,

∴拋物線解析式為y=﹣ (x+1)(x﹣4)=﹣ x2+ x+3;


(2)

解:設(shè)直線BC的解析式為y=mx+n,

把C(0,3),B(4,0)代入得 ,解得 ,

∴直線BC的解析式為y=﹣ x+3,

作PQ∥y軸交BC于Q,如圖1,

設(shè)P(x,﹣ x2+ x+3),則Q(x,﹣ x+3),

DQ=﹣ x2+ x+3﹣(﹣ x+3)=﹣ x2+3x,

∴SBCD=SCDQ+SBDQ= 4(﹣ x2+3x)=﹣ x2+6x,

∵SBCD= SABC,

∴﹣ x2+6x= × ×(4+1)×3,

整理得x2﹣4x+3=0,解得x1=1,x2=3,

∴D點坐標(biāo)為(1, )或(3,3);


(3)

解:設(shè)F(m,﹣ x+3),則EF= = ,CF= ,

點P在整個運動過程中所用時間t=EF+ =EF+ CF≥2 ,當(dāng)EF= CF時,取等號,此時t最小,

x2 x+13=( x)2,

整理得2x2﹣17x+26,解得x1=2,x2= (舍去),

∴點P在整個運動過程中所用的最少時間2× ×2=3秒,此時點F的坐標(biāo)為(2, ).


【解析】(1)先利用OC=3和4CN=5ON計算出ON= ,再證明△AON∽△COB,利用相似比計算出OA=1,得到A(﹣1,0),然后利用交點式可求出拋物線解析式為y=﹣ x2+ x+3;(2)先利用待定系數(shù)法求出直線BC的解析式為y=﹣ x+3,作PQ∥y軸交BC于Q,如圖1,設(shè)P(x,﹣ x2+ x+3),則Q(x,﹣ x+3),再計算出DQ=﹣ x2+3x,根據(jù)三角形面積公式得SBCD=SCDQ+SBDQ=﹣ x2+6x,然后根據(jù)SBCD= SABC得到﹣ x2+6x= × ×(4+1)×3,然后解方程求出x即可得到D點坐標(biāo);(3)設(shè)F(m,﹣ x+3)利用兩點間的距離公式得到EF= ,CF= x,則點P在整個運動過程中所用時間t=EF+ =EF+ CF,根據(jù)不等式公式得到EF+ CF≥2 ,當(dāng)EF= CF時,取等號,此時t最小,解方程 x2 x+13=( x)2得x1=2,x2= (舍去),于是得到點P在整個運動過程中所用的最少時間2× ×2=3秒,此時點F的坐標(biāo)為(2, ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖像記作拋物線E,現(xiàn)有點A(2,0)和拋物線E上的點B(﹣1,n),請完成下列任務(wù);
(1)【嘗試】①當(dāng)t=2時,拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點坐標(biāo)為
(2)②判斷點A是否在拋物線E上;
(3)③求n的值.
(4)【發(fā)現(xiàn)】通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線E總過定點,坐標(biāo)為
(5)【應(yīng)用】
①二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)y=x2﹣3x+3和一次函數(shù)y=﹣2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由;
②以AB為邊作矩形ABCD,使得其中一個頂點落在y軸上;若拋物線E經(jīng)過A,B,C,D其中的三點,求出所有符合條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初三年級教師對試卷講評課中學(xué)生參與的深度與廣度進(jìn)行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了名學(xué)生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為度;
(3)請將頻數(shù)分布直方圖補充完整;
(4)如果全市有6000名初三學(xué)生,那么在試卷評講課中,“獨立思考”的初三學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙A經(jīng)過點E、B、C、O,且C(0,8),E(﹣6,0),O(0,0),則cos∠OBC的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是AD邊上的中點,連接BE,并延長BE交CD的延長線于點F.
(1)證明:FD=AB;
(2)當(dāng)ABCD的面積為8時,求△FED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為(
A.3:4
B.9:16
C.4:9
D.1:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標(biāo)為(m,﹣2).
(1)求該反比例函數(shù)和一次函數(shù)的解析式.
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本中有一個例題:
有一個窗戶形狀如圖1,上部是一個半圓,下部是一個矩形,如果制作窗框的材料總長為6m,如何設(shè)計這個窗戶,使透光面積最大?
這個例題的答案是:當(dāng)窗戶半圓的半徑約為0.35m時,透光面積最大值約為1.05m2
我們?nèi)绻淖冞@個窗戶的形狀,上部改為由兩個正方形組成的矩形,如圖2,材料總長仍為6m,利用圖3,解答下列問題:

(1)若AB為1m,求此時窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案