【題目】如圖,點(diǎn)為雙曲線(xiàn)上的一點(diǎn),連接并延長(zhǎng)與雙曲線(xiàn)在第三象限交于點(diǎn),軸正半軸上一點(diǎn),連接并延長(zhǎng)與雙曲線(xiàn)交于點(diǎn),連接、,已知的面積為6,則點(diǎn)的坐標(biāo)為______

【答案】(1)

【解析】

先求出反比例函數(shù)的關(guān)系式,設(shè)點(diǎn)MN的坐標(biāo),利用雙曲線(xiàn)的對(duì)稱(chēng)性可求出SMON=SBMN,這樣可得到關(guān)于兩點(diǎn)坐標(biāo)的關(guān)系式,聯(lián)立可求出答案.

連接ON,如圖:


∵點(diǎn)A1,2)為雙曲線(xiàn)上,

,

∴反比例函數(shù)的關(guān)系式為,

由雙曲線(xiàn)的對(duì)稱(chēng)性可知:OA=OB,
SMBO=SMAO,SNBO=SNAO,
SMON=SBMN=3,

設(shè)點(diǎn)M0,m),Nn,),

SMON=,即①,

設(shè)直線(xiàn)AM的關(guān)系式為,將M0,mA1,2)代入得,

,
解得:,
∴直線(xiàn)AM的關(guān)系式為

Nn,)代入得,②,

聯(lián)立①和②解得:(舍去),

當(dāng)時(shí),,

∴點(diǎn)N的坐標(biāo)為(,1),

故答案為:(,1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,ABACAE是∠CAB的角平分線(xiàn),BM平分∠ABCAE于點(diǎn)M,經(jīng)過(guò)B,M兩點(diǎn)的OBC于點(diǎn)G,交AB于點(diǎn)F,FB恰為O的直徑.

1)求證:AEO相切;

2)當(dāng)BC6,cosC,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過(guò)點(diǎn)BBDAB,點(diǎn)CD都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長(zhǎng).

②若△BDC為直角三角形,求所有滿(mǎn)足條件的BD的長(zhǎng).

3)若BCEC ,則   .(直接寫(xiě)出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016廣西賀州市)如圖,將線(xiàn)段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段AB,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是( 。

A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是某小區(qū)入口抽象成的平面示意圖,已知入口BC4米,欄桿支點(diǎn)O與地面BC的距離為0.8米,當(dāng)欄桿OM升起到與門(mén)衛(wèi)室外墻AB的夾角成30°時(shí),一輛寬2.4米,高1.6米的轎車(chē)能否從該入口的正中間位置進(jìn)入該小區(qū)?若能,請(qǐng)通過(guò)計(jì)算說(shuō)明;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,線(xiàn)段的弦且,相切于點(diǎn),為直徑,連接,

1)求證:相切;

2)求證:;

3)若,求的值和線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條筆直的公路上有甲、乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車(chē)從乙地到甲地后休息2分鐘沿原路原速返回乙地設(shè)他們同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為(分),與乙地的距離為(米),圖中線(xiàn)段EF,折線(xiàn)分別表示兩人與乙地距離和運(yùn)動(dòng)時(shí)間之間的函數(shù)關(guān)系圖象

1)李越騎車(chē)的速度為 /分鐘;F點(diǎn)的坐標(biāo)為

2)求李越從乙地騎往甲地時(shí), 之間的函數(shù)表達(dá)式;

3)求王明從甲地到乙地時(shí), 之間的函數(shù)表達(dá)式;

4)求李越與王明第二次相遇時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)l1yx2+c,當(dāng)其函數(shù)值y1時(shí),只有一個(gè)自變量x的值與其對(duì)應(yīng)

1)求c的值;

2)將拋物線(xiàn)l1經(jīng)過(guò)平移得到拋物線(xiàn)l2yxp21

①若拋物線(xiàn)l2x軸交于A,B兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C,記ABC的外心為P,當(dāng)﹣1≤p時(shí),求點(diǎn)P的縱坐標(biāo)的取值范圍;

②當(dāng)0≤x≤2時(shí),對(duì)于拋物線(xiàn)l1上任意點(diǎn)E,拋物線(xiàn)l2上總存在點(diǎn)F,使得點(diǎn)E、F縱坐標(biāo)相等,求p的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線(xiàn)的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DCBC、DB,求證:△BCD是直角三角形;

3)在對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案