【題目】在平面直角坐標(biāo)系中,直線與雙曲線相交于點.
(1)求反比例函數(shù)的表達式;
(2)畫出雙曲線的示意圖;
(3)若另一個交點的坐標(biāo)為,則 ;當(dāng)時,的取值范圍 。
【答案】(1)y=;(2)答案見解析;(3)-1,x<-3或0<x<1
【解析】
(1)根據(jù)待定系數(shù)法,即可求解;
(2)根據(jù)反比例函數(shù)的解析式,畫出雙曲線即可;
(3)根據(jù)函數(shù)圖象,得一次函數(shù)圖象在反比例函數(shù)圖象下方部分所對應(yīng)的x的值,就是當(dāng)時,的取值范圍,進而即可求解.
(1)∵直線與雙曲線相交于點,
∴,解得:m=1,
∴A(1,3),
∴,即:k=3,
∴反比例函數(shù)的表達式為:y=;
(2)雙曲線如圖所示:
(3)把B代入y=,得:,
∵一次函數(shù)圖象在反比例函數(shù)圖象下方部分所對應(yīng)的x的值,就是當(dāng)時,的取值范圍,(如(2)題圖所示),
∴當(dāng)時,的取值范圍為:x<-3或0<x<1.
故答案是:-1,x<-3或0<x<1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為2的正方形ABCD中,P為AB上的一動點,E為AD中點,PE交CD延長線于Q,過E作EF⊥PQ交BC的延長線于F,則下列結(jié)論:①△APE≌△DQE;②PQ=EF;③當(dāng)P為AB中點時,CF=;④若H為QC的中點,當(dāng)P從A移動到B時,線段EH掃過的面積為1,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,經(jīng)過點C且與邊AB相切的動圓與CB,CA分別相交于點E,F,則線段EF長度的最小值是( 。
A.B.4.75C.5D.4.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸相交于點,與軸相交于,拋物線經(jīng)過兩點,與軸另一交點為.
(1)求拋物線的解析式;
(2)如圖1,過點作軸,交拋物線于另一點,點以每秒個單位長度的速度在線段上由點向點運動(點不與點和點重合),設(shè)運動時間為秒,過點作軸交于點,作于點,交軸右側(cè)的拋物線與點,連接,當(dāng)時,求的值;
(3)如圖2,正方形,邊在軸上,點與點重合,邊長為個單位長度,將正方形沿射線方向,以每秒個單位長度的速度平移,時間為秒,在平移過程中,請寫出正方形的邊恰好與拋物線有兩個交點時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙0的直徑,AB=10,CD是⊙0的切線,C為切點,交直線AB于E,AD⊥CD于D,AD=2CD.
(1)求證:∠CAB=∠CAD;
(2)求CD的長;
(3)求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸相交于,兩點,與軸相交于點,頂點為,直線與軸相交于點
(1)求拋物線的頂點坐標(biāo)(用含的式子表示);
(2)的長是否與值有關(guān),說明你的理由;
(3)設(shè),求的取值范圍;
(4)以為斜邊,在直線的左下方作等腰直角三角形.設(shè),直接寫出關(guān)于的函數(shù)解析式及自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的直徑,是的弦,,點是半徑上一動點,過點作的垂線分別交于點,交過點的的切線于點,交直線于點.
(1)求證:;
(2)如圖2,若是的中點,,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABOC的兩邊在坐標(biāo)軸上,OB=1,點A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標(biāo)是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是等邊三角形ABC內(nèi)一點,且PA=3,PB=4, PC=5,若將△APB繞著點B逆時針旋轉(zhuǎn)后得到△CQB,則∠APB的度數(shù)______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com