已知P是⊙O外一點(diǎn),割線PAB、PCD分別交圓于A、B和C、D,若PA=5,AB=7,CD=11,則AC∶BD=


  1. A.
    1∶3
  2. B.
    5∶2
  3. C.
    5∶7
  4. D.
    5∶11
A
由切割線定理知:PA·PB=PC·PD∵PA=5,AB=7,CD=11∴PB=7+5=12 PD=PC+CD=PC+11∴5×12=PC×(PC+11)∴解得PC=-15(舍去)或PC=4∴PC=4∵△PAC∽△PDB∴AC∶BD=PC∶PB即:AC∶BD=1∶3∴選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、已知P是⊙O外一點(diǎn),PA切⊙O于A,PB切⊙O于B.若PA=6,則PB=
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南京)如圖,A、B是⊙O上的兩個定點(diǎn),P是⊙O上的動點(diǎn)(P不與A、B重合)、我們稱∠APB是⊙O上關(guān)于點(diǎn)A、B的滑動角.
(1)已知∠APB是⊙O上關(guān)于點(diǎn)A、B的滑動角,
①若AB是⊙O的直徑,則∠APB=
90
90
°;
②若⊙O的半徑是1,AB=
2
,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點(diǎn),以O(shè)2為圓心作一個圓與⊙O1相交于A、B兩點(diǎn),∠APB是⊙O1上關(guān)于點(diǎn)A、B的滑動角,直線PA、PB分別交⊙O2于M、N(點(diǎn)M與點(diǎn)A、點(diǎn)N與點(diǎn)B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知P是⊙O外一點(diǎn),OP交⊙O于點(diǎn)A,PA=8,點(diǎn)P到⊙O的切線長為12,則⊙O的半徑長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A是⊙O外一點(diǎn),B是⊙O上一點(diǎn),AO的延長線交⊙O于C,連結(jié)BC.已知∠C=22.5°,∠BAC=45°,判斷AB是否為⊙O的切線并說明理由.

查看答案和解析>>

同步練習(xí)冊答案