【題目】先化簡,再求值:

(1)2a3(a2b)2(2a2ab),其中a,b=-2;

(2)(m5n4mn)2(2m4n6mn),其中mn4,mn=-3.

【答案】1)-a2-2b,;(2)-3m+3n-8mn,12.

【解析】

1)根據(jù)去括號法則及合并同類項法則把所給的整式化為最簡后再代入求值即可;(2)根據(jù)去括號法則及合并同類項法則把所給的整式化為最簡后再整體代入求值即可.

(1)2a3(a2b)2(2a2ab),

=2a3a23b4a2-2a+b

=a2-2b

a,b=-2時,

原式==.

(2)(m5n4mn)2(2m4n6mn)

=m5n4mn4m+8n-12mn

=-3m+3n-8mn

=-3m-n-8mn

mn4mn=-3時,

原式=-3×4-8×(-3=-12+24=12.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=﹣ (x﹣h)2+k與x軸交于A、B,與y軸交于C,拋物線的頂點為D,對稱軸交x軸于H,直線y= x+ 經(jīng)過點A與對稱軸交于E,點E的縱坐標為3.

(1)求h、k的值;
(2)點P為第四象限拋物線上一點,連接PH,點Q為PH的中點,連接AQ、AP,設(shè)點P的橫坐標為t,△AQP的面積為S,求S與t的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,過點Q作y軸的平行線QK,過點D作y軸的垂直DK,直線QK、DK交于點K,連接PK、EK,若2∠DKE+∠HPK=90°,求點P的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形中,為平面直角坐標系的原點,點的坐標分,點的坐標為,點在第一象限內(nèi),點從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動(即沿著長方形移動一周).

1)寫出點的坐標;

2)當點移動了4秒時,求出點的坐標.

3)在移動過程中,當點軸的距離為5個單位長度時,求點移動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補角為   ;

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】襄江中學組織九年級部分學生到古隆中參觀,租用的客車有50座和30座兩種可供選擇.學校根據(jù)參加參觀的學生人數(shù)計算可知:若只租用30座客車x輛,還差10人才能坐滿;若只租用50座客車,比只租用30座客車少用2輛,且有一輛車沒有坐滿但超過30人.
(1)寫出九年級參觀的學生人數(shù)y與x的關(guān)系式;
(2)求出此次參觀的九年級學生人數(shù);
(3)若租用一輛30座客車往返費用為260元,租用一輛50座客車往返費用為400元,如何選擇租車方案費用最低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BAC=90°,AB=AC,D是BC上的點.求證:BD2+CD2=2AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了讓更多的居民享受免費的體育健身服務(wù),重慶市將陸續(xù)建成多個社區(qū)健身點,某社區(qū)為了了解健身點的使用情況,現(xiàn)隨機調(diào)查了部分社區(qū)居民,將調(diào)查結(jié)果分成四類,A:每天健身;B:經(jīng)常健身;C:偶爾健身;D:從不健身;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了名社區(qū)居民,其中a=;請將折線統(tǒng)計圖補充完整;
(2)為了吸引更多社區(qū)居民參加健身,健身點準備舉辦一次健身講座培訓(xùn),為此,想從被調(diào)查的A類和D類居民中分別選取一位在講座上進行交流,請用列表法或畫樹狀圖的方法列出所有等可能的結(jié)果,并求出所選兩位居民恰好是一位男性和一位女性的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察一列數(shù):1,24,8,16,我們發(fā)現(xiàn),這一列數(shù)從第二項起,每一項與它前一項的比都等于2.一般地,如果一列數(shù)從第二項起,每一項與它前一項的比都等于同一個常數(shù),這一列數(shù)就叫做等比數(shù)列,這個常數(shù)就叫做等比數(shù)列的公比.

(1)等比數(shù)列3,-12,48,的第4項是______

(2)如果一列數(shù)a1,a2,a3a4,是等比數(shù)列,且公比為q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2a4=a3q=(a1q2)q=a1q3,則a5=_______,an=______(a1q的式子表示);

(3)一個等比數(shù)列的第2項是9,第4項是36,求它的公比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一方有難八方支援,某市政府籌集了抗旱必需物資120噸打算運往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)

車型

汽車運載量(噸/輛)

汽車運費(元/輛)

1)若全部物資都用甲、乙兩種車型來運送,需運費元,問分別需甲、乙兩種車型各幾輛?

2)為了節(jié)約運費,該市政府可以調(diào)用甲、乙、丙三種車型參與運送,已知他們的總輛數(shù)為輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?

3)求出哪種方案的運費最?最省是多少元?

查看答案和解析>>

同步練習冊答案