【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點(diǎn)D為AB邊上的一點(diǎn),
(1)試說(shuō)明:∠EAC=∠B ;(2)若AD=10,BD=24,求DE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)DE=26
【解析】試題分析:(1)由于△ACB與△ECD都是等腰直角三角形,CD=CE,CB=CA,∠B=∠CAB=45°,∠ACB=∠ECD=90°,于是∠ACE+∠ACD=∠ACD+∠BCD,根據(jù)等式性質(zhì)可得∠ACE=∠BCD,利用SAS可證△ACE≌△BCD,利用全等三角形的對(duì)應(yīng)角相等即可解答;
(2)根據(jù)△ACE≌△BCD,于是∠EAC=∠B=45°,AE=BD=24,易求∠EAD=90°,再利用勾股定理可求DE=26.
解:(1)∵∠ACB=∠ECD=90°,
∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,
∴∠ECA=∠DCB,
∵△ACB和△ECD都是等腰三角形,
∴EC=DC,AC=BC,
在△ACE和△BCD中,
,
∴△ACE≌△BCD,
∴∠EAC=∠B.
(2)∵△ACE≌△BCD,
∴AE=BD=24,
∵∠EAC=∠B=45°
∴∠EAD=∠EAC+∠CAD=90°,
∴在Rt△ADE中,DE2=EA2+AD2,
∴DE2=102+242,
∴DE=26.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購(gòu)買(mǎi)A、B兩種型號(hào)的污水處理設(shè)備共8臺(tái),用于同時(shí)治理不同成分的污水,若購(gòu)買(mǎi)A型2臺(tái)、B型3臺(tái)需54萬(wàn),購(gòu)買(mǎi)A型4臺(tái)、B型2臺(tái)需68萬(wàn)元.
(1)求出A型、B型污水處理設(shè)備的單價(jià);
(2)經(jīng)核實(shí),一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,一臺(tái)B型設(shè)備一個(gè)月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y=(4m+6)x , 當(dāng)m 時(shí),函數(shù)圖象經(jīng)過(guò)第二、四象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)多邊形的每個(gè)外角都等于60°,則它的內(nèi)角和等于( )
A.180°
B.720°
C.1080°
D.540°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人存入5000元參加三年期教育儲(chǔ)蓄(免征利息稅),本息共得5417元,那么這種儲(chǔ)蓄的年利率為
A.2.22%B.2.58%C.2.78% D.2.38%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.
(1)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;
(2)問(wèn)t為何值時(shí),△BCP為等腰三角形?
(3)另有一點(diǎn)Q,從點(diǎn)C開(kāi)始,按C→B→A→C的路徑運(yùn)動(dòng),且速度為每秒2cm,若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)P、Q中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng)t為何值時(shí),直線PQ把△ABC的周長(zhǎng)分成相等的兩部分?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com