【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,則下列結論: abc0;② 2ab0; b24ac0;④ 9a+3b+c0; c+8a0.正確的結論有( 。.

A. 1B. 2C. 3D. 4

【答案】C

【解析】

由拋物線的開口方向判斷a0的關系,由拋物線與y軸的交點判斷c0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.

解:拋物線開口向下,得:a0;拋物線的對稱軸為x=-=1,則b=-2a2a+b=0,b=-2a,故b0;拋物線交y軸于正半軸,得:c0.

abc0, ①正確;

2a+b=0,②正確;

由圖知:拋物線與x軸有兩個不同的交點,則=b2-4ac0,故③錯誤;

由對稱性可知,拋物線與x軸的正半軸的交點橫坐標是x=3,所以當x=3時,y= 9a+3b+c=0,故④錯誤;

觀察圖象得當x=-2時,y0,

4a-2b+c0

b=-2a,

4a+4a+c0

8a+c0,故⑤正確.

正確的結論有①②⑤,

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦EFAB,垂足為C,∠A30°,連結BE,MBE的中點,連結MF,過點F作直線FDAE,交AB的延長線于點D

1)求證:FD是⊙O的切線;

2)若MF,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程有實數(shù)根.

1)求實數(shù)m的取值范圍;

2)當m=2時,方程的根為,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.

(1)分別求出一次函數(shù)與反比例函數(shù)的解析式;

(2)求OAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中拋物線軸于點,交軸于點兩點橫坐標為,點縱坐標為

求拋物線的解析式;

動點在第四象限且在拋物線上,當面積最大時,求點坐標,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓銷售價格相同,“春節(jié)期間”,兩家采摘園將推岀優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠:乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓按售價付款,優(yōu)惠期間,設游客的草莓采摘量為x(千克),在甲園所需總費用為y(元),在乙園所需總費用為y元,yyx之間的函數(shù)關系如圖所示.

1)求y、yx的函數(shù)表達式;

2)在春節(jié)期間,李華一家三口準備去草莓園采摘草莓,采摘的草莓合在一起支付費用,則李華一家應選擇哪家草莓園更劃算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由兩個可以自由轉動的轉盤、每個轉盤被分成如圖所示的幾個扇形、游戲者同時轉動兩個轉盤,如果一個轉盤轉出了紅色,另一轉盤轉出了藍色,游戲者就配成了紫色下列說法正確的是( 。

A. 兩個轉盤轉出藍色的概率一樣大

B. 如果A轉盤轉出了藍色,那么B轉盤轉出藍色的可能性變小了

C. 先轉動A 轉盤再轉動B 轉盤和同時轉動兩個轉盤,游戲者配成紫色的概率不同

D. 游戲者配成紫色的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)營A種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.

1)不妨設該種品牌玩具的銷售單價為x元(x40),請用含x的代數(shù)式表示該玩具的銷售量.

2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于450件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B種玩具并轉手出售,根據(jù)市場調(diào)查并準備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付倉庫保管費350元,請問商場如何使用這筆資金,采用哪種方案獲利較多?

查看答案和解析>>

同步練習冊答案