【題目】是新規(guī)定的某種運算符號,設xyxy+x+y,則2m=﹣16中,m的值為______

【答案】﹣6

【解析】

利用題中的新定義化簡所求方程,求出方程的解即可得到m的值.

根據(jù)題中的新定義得:2m=2m+2+m=-16,

移項合并得:3m=-18,

解得:m=-6

故答案為:-6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】求證:不論k為何值時,關于x的一元二次方程x2+k2x+k4)=0有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校進行書法比賽,有39名同學參加預賽,只能有19名同學參加決賽,他們預賽的成績各不相同,其中一名同學想知道自己能否進入決賽,不僅要了解自己的預賽成績,還要了解這39名同學預賽成績的( 。
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知任意三角形的三邊長,如何求三角形面積?

古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明

例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:

∵a=3,b=4,c=5∴p==6,∴S===6

事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學家秦九韶提出的秦九韶公式等方法解決.

如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;

(2)求△ABC的內(nèi)切圓半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王去早市為餐館選購蔬菜,他指著標價為每斤3元的豆角問攤主:這豆角能便宜嗎?攤主:多買按八折,你要多少斤?小王報了數(shù)量后攤主同意按八折賣給小王,并說:之前一人只比你少買5斤就是按標價,還比你多花了3元呢!小王購買豆角的數(shù)量是(  )

A. 30 B. 25 C. 20 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形繞一點至少旋轉_____°與自身完全重合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AB=8,周長等于24,則AD=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下面各題
(1)計算:(﹣ 1﹣2+(π﹣3.14)0
(2)解方程: =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.

(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).

(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

同步練習冊答案