如圖,已知AD∥BC,AD平分∠CAE,試說(shuō)明△ABC是等腰三角形.
分析:根據(jù)角平分線的定義可得∠EAD=∠CAD,再根據(jù)平行線的性質(zhì)可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根據(jù)等角對(duì)等邊即可得證.
解答:證明:∵AD平分∠CAE,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠EAD=∠B,∠CAD=∠C,
∴∠B=∠C,
∴AB=AC.
故△ABC是等腰三角形.
點(diǎn)評(píng):本題考查了等腰三角形的判定,角平分線的定義,平行線的性質(zhì),比較簡(jiǎn)單熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠ABC=
68°
,∠C=
56°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD=BC.EC⊥AB.DF⊥AB,C.D為垂足,要使△AFD≌△BEC,還需添加一個(gè)條件.若以“ASA”為依據(jù),則添加的條件是
∠A=∠B
∠A=∠B

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD=BC,AC=BD,∠DAC與∠CBD有什么關(guān)系?說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠C=
56°
56°

查看答案和解析>>

同步練習(xí)冊(cè)答案