【題目】如圖所示,AB為⊙O的直徑,點C在⊙O上,且OC⊥AB,過點C的弦CD與線段OB相交于點E,滿足∠AEC=65°,連接AD,則∠BAD等于( )
A.20°B.25°C.30°D.32.5°
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線,垂足為點是直線上的兩點,且.直線繞點按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為.
(1)當時,在直線上找點,使得是以為頂角的等腰三角形,此時_____.
(2)當在什么范圍內(nèi)變化時,直線上存在點,使得是以為頂角的等腰三角形,請用不等式表示的取值范圍:_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張老師把微信運動里“好友計步榜”排名前20的好友一天行走的步數(shù)做了整理,繪制了如下不完整的統(tǒng)計圖表:
組別 | 步數(shù)分組 | 頻率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合計 | 1 |
根據(jù)信息解答下列問題:
(1)填空:m= ,n= ;并補全條形統(tǒng)計圖;
(2)這20名朋友一天行走步數(shù)的中位數(shù)落在 組;(填組別)
(3)張老師準備隨機給排名前4名的甲、乙、丙、丁中的兩位點贊,請求出甲、乙被同時點贊的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是直徑,OD⊥BC于點D,延長DO交⊙O于F,連接OC,AF.
(1)求證:△COD≌△BOD;
(2)填空:①當∠1= 時,四邊形OCAF是菱形;
②當∠1= 時,AB=2OD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(4,0),C(0,2)三點.
(1)求這條拋物線的解析式;
(2)E為拋物線上一動點,是否存在點E,使以A、B、E為頂點的三角形與△COB相似?若存在,試求出點E的坐標;若不存在,請說明理由;
(3)若將直線BC平移,使其經(jīng)過點A,且與拋物線相交于點D,連接BD,試求出∠BDA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,點C在優(yōu)弧AB上,將弧BC沿BC折疊后剛好經(jīng)過AB的中點D. 若⊙O的半徑為,AB=8,則BC的長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=90°,AC=8,BC=6,點P、Q分別在邊AC、射線CB上,且AP=CQ,過點P作PM⊥AB,垂足為點M,聯(lián)結(jié)PQ,以PM、PQ為鄰邊作平行四邊形PQNM,設AP=x,平行四邊形PQNM的面積為y.
(1)當平行四邊形PQNM為矩形時,求∠PQM的正切值;
(2)當點N在△ABC內(nèi),求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)當過點P且平行于BC的直線經(jīng)過平行四邊形PQNM一邊的中點時,直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把菱形向右平移至的位置,作,垂足為,與相交于點,的延長線交于點,連接,則下列結(jié)論:
①;②;③:④.
則其中所有成立的結(jié)論是( )
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com