如圖,已知EF是⊙O的直徑,把∠A為60°的直角三角板ABC的一條直角邊BC放在直線EF上,斜邊AB與⊙O交于點(diǎn)P,點(diǎn)B與點(diǎn)O重合;將三角形ABC沿OE方向平移,使得點(diǎn)B與點(diǎn)E重合為止.設(shè)∠POF=x°,則x的取值范圍是   
【答案】分析:在移動(dòng)的過程中,x的最小值即點(diǎn)B和點(diǎn)O重合時(shí),即是90°-60°=30°.
x的最大值即當(dāng)點(diǎn)B和點(diǎn)E重合時(shí),根據(jù)圓周角定理,得x=30°×2=60°.
由此可求出x的取值范圍.
解答:解:當(dāng)O、B重合時(shí),∠POF的度數(shù)最小,此時(shí)∠POF=∠PBF=30°;
當(dāng)B、E重合時(shí),∠POF的度數(shù)最大,∠POF=2∠PBF=60°;
故x的取值范圍是30°≤x≤60°.
故答案為:30°≤x≤60°.
點(diǎn)評(píng):本題主要考查了圓周角定理,解決本題的關(guān)鍵是能夠分析出x取最大值和最小值時(shí)B點(diǎn)的位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知EF是梯形ABCD的中位線,若AB=8,BC=6,CD=2,∠B的平分線交EF于G,則FG的長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知EF是梯形ABCD的中位線,△DEF的面積為4cm2,則梯形ABCD的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知EF是⊙O的直徑,把∠A為60°的直角三角板ABC的一條直角邊BC放在直線EF上,斜邊AB與⊙O交于點(diǎn)P,點(diǎn)B與點(diǎn)O重合;將三角形ABC沿OE方向平移,使得點(diǎn)B與點(diǎn)E重合為止.設(shè)∠POF=x°,則x的取值范圍是
30≤x≤60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•當(dāng)涂縣模擬)如圖,已知EF是梯形ABCD的中位線,連接AF,若△AEF的面積為6cm2,則梯形ABCD的面積為
24
24
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在證明三角形中位線性質(zhì)“如圖,已知EF是△ABC的中位線,求證:EF∥BC,EF=
12
BC”時(shí),小雨根據(jù)老師的引導(dǎo)給出了一種思路:延長EF至D,使EF=DF,連接AD、CE,證明四邊形AECD是平行四邊形即可.
小婷思考后認(rèn)為小雨的思路是正確的,可行的.
你能在這樣的思路下完成證明嗎?請(qǐng)寫出你的證明過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案