【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據圖表中的信息完成下列問題:

頻數(shù)

頻率

第一組(0≤x<15)

3

0.15

第二組(15≤x<30)

6

a

第三組(30≤x<45)

7

0.35

第四組(45≤x<60)

b

0.20


(1)頻數(shù)分布表中a= , b= , 并將統(tǒng)計圖補充完整;
(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?
(3)已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?

【答案】
(1)0.3;4 補全統(tǒng)計圖得:

(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);
(3)畫樹狀圖得:

∵共有12種等可能的結果,所選兩人正好都是甲班學生的有3種情況,

∴所選兩人正好都是甲班學生的概率是: =


【解析】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3; ∵總人數(shù)為:3÷0.15=20(人),
∴b=20×0.20=4(人);
故答案為:0.3,4;
補全統(tǒng)計圖得:

(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:n為正整數(shù),點A1(x1 , y1),A2(x2 , y2),A3(x3 , y3),A4(x4 , y4)…An(xn , yn)均在直線y=x﹣1上,點B1(m1 , p1),B2(m2 , p2),B3(m3 , p3)…Bn(mn , pn)均在雙曲線y=﹣ 上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,A3B3⊥x軸,…,AnBn⊥x軸,BnAn+1⊥y軸,若點A1的橫坐標為﹣1,則點A2017的坐標為(
A.(﹣1,﹣2)
B.(2,1)
C.( ,﹣
D.( ,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,AC與BD相交于點O,∠A=30°,∠COD=105°.則∠D的大小是(
A.30°
B.45°
C.65°
D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:角平分線上的點到這個角的兩邊距離相等. 已知:
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結論: ①二次三項式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個數(shù)有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)經過點A(1,0),B(3,0),C(0,3).

(1)求拋物線的表達式及頂點D的坐標;
(2)如圖甲,點P是直線BC上方拋物線上一動點,過點P作y軸的平行線,交直線BC于點E,是否存在一點P,使線段PE的長最大?若存在,求出PE長的最大值;若不存在,請說明理由;
(3)如圖乙,過點A作y軸的平行線,交直線BC于點F,連接DA、DB四邊形OAFC沿射線CB方向運動,速度為每秒1個單位長度,運動時間為t秒,當點C與點B重合時立即停止運動,設運動過程中四邊形OAFC與四邊形ADBF重疊部分面積為S,請求出S與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個不透明的口袋,甲口袋中裝有3個分別標有數(shù)字﹣1,﹣2,﹣4的小球,乙口袋中裝有3個分別標有數(shù)字﹣3,5,6的小球,它們的形狀、大小完全相同,現(xiàn)隨機從甲口袋中摸出一個小球記下數(shù)字,再從乙口袋中摸出一個小球記下數(shù)字.
(1)請用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結果;
(2)求出兩個數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,AB=CD=15,AC平分∠BAD,AC與BD交于點O,將△ABD繞點D順時針方向旋轉,得到△EFD,旋轉角為α(0°<α<180°)點A的對應點為點E,點B的對應點為點F

(1)求證:四邊形形ABCD是菱形
(2)若∠BAD=30°,DE邊為與AB邊相交于點M,當點F恰好落在AC上時,求證:MD=ME
(3)若△ABD的周長是48,EF邊與BC邊交于點N,DF邊與BC邊交于點P,在旋轉的過程中,當△FNP是直角三角形是,△FNP的面積是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D,E分別是△ABC的邊AB,AC上的中點,如果△ADE的周長是6,則△ABC的周長是(
A.6
B.12
C.18
D.24

查看答案和解析>>

同步練習冊答案