【題目】如圖,在四邊形中,,,.分別以點,為圓心,大于長為半徑畫弧,兩弧交于點,作射線交于點,交于點.若點是的中點,的周長為8,則的長為( )
A.2B.3C.4D.5
【答案】A
【解析】
根據(jù)平行線的性質(zhì)可得∠FAC=∠BCA,∠DAB+∠ABC=180°,可得∠DAB=∠ADC,利用ASA可證明△AOF≌△COB,可得AF=BC=3,即可證明四邊形ABCD是等腰梯形,可得AB=CD,根據(jù)作圖可知點E在線段AC的垂直平分線上,由點O為AC中點可得BE是AC的垂直平分線,可得AF=FC,AB=BC,即可求出FC=CD=BC=3,根據(jù)△CDF的周長求出DF的長即可.
∵AD//BC,
∴∠FAC=∠ACB,∠DAB+∠ABC=180°,
∵,
∴∠DAB=∠ADC,
∴四邊形ABCD是等腰梯形,
∴AB=CD,
∵點O為AC中點,
∴OA=OC,
在△AOF和△COB中,,
∴△AOF≌△COB,
∴AF=BC=3,
∵以點,為圓心,大于長為半徑畫弧,兩弧交于點,
∴點E在線段AC的垂直平分線上,
∵點O是AC中點,交于點,
∴BE是AC的垂直平分線,
∴AF=FC,AB=BC,
∴FC=CD=BC=3,
∵△CDF的周長是8,
∴DF=8-CF-CD=2,
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是邊長為3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā)(點P不與點A、B重合,點Q不與點B、C重合),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動,設(shè)點P的運動時間為ts,則當t為何值時,△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+x+c(a≠0)與x軸交于點A,B兩點,
其中A(-1,0),與y軸交于點C(0,2).
(1)求拋物線的表達式及點B坐標;
(2)點E是線段BC上的任意一點(點E與B、C不重合),過點E作平行于y軸的直線交拋物線于點F,交x軸于點G.
①設(shè)點E的橫坐標為m,用含有m的代數(shù)式表示線段EF的長;
②線段EF長的最大值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中.
(1)作出△ABC關(guān)于軸對稱的,并寫出三個頂點的坐標: ( 。,( ),( 。
(2)直接寫出△ABC的面積為 ;
(3)在軸上畫點P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P在⊙O的直徑AB的延長線上,PC為⊙O的切線,點C為切點,連接AC,過點A作PC的垂線,點D為垂足,AD交⊙O于點E.
(1)如圖1,求證:∠DAC=∠PAC;
(2)如圖2,點F(與點C位于直徑AB兩側(cè))在⊙O上,,連接EF,過點F作AD的平行線交PC于點G,求證:FG=DE+DG;
(3)在(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,經(jīng)過點A的雙曲線y=(x>0)同時經(jīng)過點B,且點A在點B的左側(cè),點A的橫坐標為1,∠AOB=∠OBA=45°,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在四邊形中,,,點,分別在射線,上,滿足.
(1)如圖1,若點,分別在線段,上,求證:;
(2)如圖2,若點,分別在線段延長線與延長線上,請直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com