如圖,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中點(diǎn),以D作DE⊥AC與CB的延長線交于E,以AB、BE為鄰邊作長方形ABEF,連接DF,求DF的長.
∵△ABC為直角三角形,∠C=60°,
∴∠BAC=30°,
∴BC=
1
2
AC,
∵D為AC的中點(diǎn),
∴BC=DC,
∴在△DEC≌△BAC中,
BC=DC
∠C=∠C
∠ABC=∠EDC
,
∴△DEC≌△BAC,
即AB=DE,∠DEB=30°,
∴∠FED=60°,
∵EF=AB,∴EF=DE,
∴△DEF為等邊三角形,
即DF=AB,
在直角三角形ABC中,BC=2,則AC=4
AB=
AC2-BC2
=2
3

答:DF的長為2
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的對角線AC,BD相交于點(diǎn)O,E是AC上的一點(diǎn),過點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
①試說明OE=OF;
②若點(diǎn)E在AC的延長線上,AG⊥BE,交EB延長線于點(diǎn)G,AG的延長線交DB的延長線于點(diǎn)F,若其他條件不變,請作圖,結(jié)論OE=OF仍成立嗎?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),在正方形ABCD中,M為AB的中點(diǎn),E為AB延長線上一點(diǎn),MN⊥DM,且交∠CBE的平分線于點(diǎn)N.
(1)DM與MN相等嗎?試說明理由.
(2)若將上述條件“M為AB的中點(diǎn)”改為“M為AB上任意一點(diǎn)”,其余條件不變,如圖(2),則DM與MN相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=
4
3
,④S△ODC=S四邊形BEOF中,正確的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

順次連接四邊形各邊中點(diǎn),所得的圖形是______.順次連接對角線______的四邊形的各邊中點(diǎn)所得的圖形是矩形.順次連接對角線______的四邊形的各邊中點(diǎn)所得的四邊形是菱形.順次連接對角線______的四邊形的各邊中點(diǎn)所得的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連結(jié)BD并延長交EG于點(diǎn)T,交FG于點(diǎn)P,則GT=( 。
A.
2
B.2
2
C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:如圖,已知四邊形ABCD是邊長為2的正方形,以對角線BD為邊作正三角形BDE,過E作DA的延長線的垂線EF,垂足為F.
(1)找出圖中與EF相等的線段,并證明你的結(jié)論;
(2)求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A,B、C三點(diǎn)共線,正方形BCDE和ABFG的邊長分別為2a、a,連接CE和CG,則圖中陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,下列圖形中,是中心對稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案