【題目】如圖,完成下列推理過程:

如圖所示,點E在△ABC外部,點DBC邊上,DEACF,若∠1=∠3,∠E=∠C,AE=AC,求證:△ABC≌△ADE.

證明:∵ ∠E=∠C(已知),

∠AFE=∠DFC_________________,

∴∠2=∠3______________________,

又∵∠1=∠3_________________,

∴ ∠1=∠2(等量代換),

__________+∠DAC= __________+∠DAC______________________,

∠BAC =∠DAE,

△ABC和△ADE

∴△ABC≌△ADE_________________.

【答案】 對頂角相等 三角形內(nèi)角和定理 已知 ∠1 ∠2 等式的性質(zhì) ASA

【解析】首先證明∠2=3,再證明∠BAC=DAE進(jìn)而可利用ASA判定三角形全等即可.

∵∠E=C(已知),

AFE=DFC(對頂角相等),

∴∠2=3(三角形內(nèi)角和定理).

又∵∠1=3(已知),

∴∠1=2(等量代換),

∴∠1+∠DAC=2+∠DAC(等式的性質(zhì)),

即∠BAC=DAE

在△ABC和△ADE,

,

∴△ABC≌△ADEASA).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙OBC于點D,交AC于點F,過點CCE∥AB,與過點A的切線相交于點E,連接AD.

(1)求證:AD=AE;

(2)若AB=6,AC=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中,∠ACB=90°,BC=5,點 P 在邊 AB 上,連接 CP.將△BCP 沿直線CP 翻折后,點 B 恰好落在邊 AC 的中點處,則點 P AC 的距離是( )

A. 2.5 B. C. 3.5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CD是斜邊AB上的中線,分別過點A,CAEDC,CEAB,兩線交于點E.

(1)求證:四邊形AECD是菱形;

(2)如果∠B=60°,BC=2,求四邊形AECD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高三亞市初級中學(xué)教師業(yè)務(wù)水平,相關(guān)單位舉辦了首屆三亞市敏特杯數(shù)學(xué)命題大賽,在眾多自命題題目中共有5道題目進(jìn)入專家組評審,將前5天的投票數(shù)據(jù)整理成如下不完整的統(tǒng)計圖表:

票數(shù)條形統(tǒng)計圖

題目編號

 人數(shù)

 百分比

 1

40

10%

 2

120

m%

 3

88

22%

 4

a

20%

5

72

18%

合計

400

1

請根據(jù)圖表提供的信息,解答下面問題:

(1)票數(shù)統(tǒng)計表中的a=   ,m=   

(2)請把票數(shù)統(tǒng)計圖補充完整;

(3)若繪制票數(shù)扇形統(tǒng)計圖編號是“4”的題目所對應(yīng)扇形的圓心角是   度;

(4)至本次投票結(jié)束,總票數(shù)共有1200票,請估計編號是“3”的題目約獲得   票.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王強同學(xué)用10塊高度都是2cm的相同長方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進(jìn)一個等腰直角三角板(ACBC,∠ACB90°),點CDE上,點AB分別與木墻的頂端重合,則兩堵木墻之間的距離為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠AOB內(nèi)一點P,P1P2分別P是關(guān)于OA、OB的對稱點,P1P2OAM,交OBN,若P1P26cm,則△PMN的周長是( 。

A.3cmB.4cmC.5cmD.6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A D C F在同一直線上,AB=DE,AD=CF,添加下列條件后,仍不能判斷△ABC≌△DEF的是 ( )

A. BC=EFB. A=EDFC. ABDED. BCA=F

查看答案和解析>>

同步練習(xí)冊答案