將拋物線C:y=x2+3x-10,將拋物線C平移到C′.若兩條拋物線C,C′關(guān)于直線x=1對(duì)稱,則下列平移方法中正確的是( )
A.將拋物線C向右平移個(gè)單位
B.將拋物線C向右平移3個(gè)單位
C.將拋物線C向右平移5個(gè)單位
D.將拋物線C向右平移6個(gè)單位
【答案】分析:主要是找一個(gè)點(diǎn),經(jīng)過平移后這個(gè)點(diǎn)與直線x=1對(duì)稱.拋物線C與y軸的交點(diǎn)為A(0,-10),與A點(diǎn)以對(duì)稱軸對(duì)稱的點(diǎn)是B(-3,-10).若將拋物線C平移到C′,就是要將B點(diǎn)平移后以對(duì)稱軸x=1與A點(diǎn)對(duì)稱.則B點(diǎn)平移后坐標(biāo)應(yīng)為(2,-10).因此將拋物線C向右平移5個(gè)單位.
解答:解:∵拋物線C:y=x2+3x-10=,
∴拋物線對(duì)稱軸為x=-
∴拋物線與y軸的交點(diǎn)為A(0,-10).
則與A點(diǎn)以對(duì)稱軸對(duì)稱的點(diǎn)是B(-3,-10).
若將拋物線C平移到C′,并且C,C′關(guān)于直線x=1對(duì)稱,就是要將B點(diǎn)平移后以對(duì)稱軸x=1與A點(diǎn)對(duì)稱.
則B點(diǎn)平移后坐標(biāo)應(yīng)為(2,-10).
因此將拋物線C向右平移5個(gè)單位.
故選C.
點(diǎn)評(píng):主要考查了函數(shù)圖象的平移,拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo)的求法,要求熟練掌握平移的規(guī)律:左加右減,上加下減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,拋物線F1:y=x2的頂點(diǎn)為P,將拋物線F1平移得到拋物線F2,使拋物線F2的頂點(diǎn)Q始終在拋物線F1圖象上(點(diǎn)Q不與點(diǎn)P重合),過點(diǎn)Q直線QB∥x軸,與拋物線F1的另一個(gè)交點(diǎn)為B,拋物線F1的對(duì)稱軸交拋物線F2于點(diǎn)A.
(1)猜想四邊形ABOQ的形狀為
 
,若四邊形ABOQ有一個(gè)內(nèi)角為60°,則此時(shí)點(diǎn)Q的坐標(biāo)為
 

(2)若將“拋物線F1:y=x2”改為“拋物線F1:y=ax2”,其他條件不變,請(qǐng)你在圖2中探究(1)中的問題;精英家教網(wǎng)
(3)在(2)的基礎(chǔ)上,若將“拋物線F1:y=ax2”改為“拋物線F1:y=a(x-m)2+n”,請(qǐng)你直接寫出點(diǎn)Q的坐標(biāo)(用含a、m、n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,拋物線F1:y=x2+b1x的頂點(diǎn)為P,與x軸交于A、O兩點(diǎn),且△APO為等腰直角三角形,△A′P′O與△APO關(guān)于原點(diǎn)O位似,且△A′P′O與△APO在原點(diǎn)的兩側(cè),相似比為1:2,拋物線F2:y=a2x2+b2x經(jīng)過O、P′、A′三點(diǎn).
精英家教網(wǎng)
(1)求A′O的長及a2的值;
(2)若將“拋物線F1:y=x2+b1x”改為“拋物線F1:y=a1x2+b1x(a1>0)”,其他條件不變,求a2與a1的關(guān)系;
(3)如圖2,若將“拋物線F1:y=a1x2+b1x”改為“拋物線F1:y=a1x2+b1x+c1(a1>0)”,將“拋物線F2:y=a2x2+b2x”改為“拋物線F1:y=a2x2+b2x+c2”,將“相似比為1:2”改為“相似比為1:m”,猜想a2與a1的關(guān)系.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線C:y=x2+3x-10平移到拋物線C′,若兩條拋物線C、C′關(guān)于y軸對(duì)稱,則下列平移方法中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=(m-1)x+3與函數(shù)y=x2+m的圖象的一個(gè)交點(diǎn)的橫坐標(biāo)為2,
(1)求關(guān)于x的一元二次方程x2-(m-1)x+m-4=0的解.
(2)若將拋物線C1:y=x2-(m-1)x+m-4繞原點(diǎn)旋轉(zhuǎn)180°,得到圖象C2,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,分別與圖象C1、C2交于M、N兩點(diǎn),當(dāng)線段MN的長度最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南開區(qū)二模)如圖1,點(diǎn)C、B分別為拋物線C1:y1=x2+1,拋物線C2:y2=a2x2+b2x+c2的頂點(diǎn).分別過點(diǎn)B、C作x軸的平行線,交拋物線C1、C2于點(diǎn)A、D,且AB=BD.
(1)求點(diǎn)A的坐標(biāo):
(2)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=2x2+b1x+c1”.其他條件不變,求CD的長和a2的值;
(3)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=4x2+b1x+c1”,其他條件不變,求b1+b2的值
2
3
2
3
(直接寫結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案