如圖,已知直線a∥b∥c,直線m、n與a、b、c分別交于點(diǎn)A、C、E、B、D、F,AC=4,CE=6,BD=3,則BF=(  )

A.7  B.7.5  C.8  D.8.5
B
根據(jù)平行線分線段成比例定理得,因?yàn)閍∥b∥c,所以,∴,DF=4.5,BF=7.5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用紙折出黃金分割點(diǎn):裁一張正方形的紙片ABCD,先折出BC的中點(diǎn)E,再折出線段AE,然后通過折疊使EB落到線段EA上,折出點(diǎn)B的新位置B′,因而EB′=EB,類似地,在AB上折出點(diǎn)B″使AB″=AB′,這時(shí)B″就是AB的黃金分割點(diǎn),請(qǐng)你證明這個(gè)結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知=k,則k的值是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,AB=AC=4.一動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC方向以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),到達(dá)點(diǎn)C即停止.在整個(gè)運(yùn)動(dòng)過程中,過點(diǎn)P作PD⊥BC與Rt△ABC的直角邊相交于點(diǎn)D,延長(zhǎng)PD至點(diǎn)Q,使得PD=QD,以PQ為斜邊在PQ左側(cè)作等腰直角三角形PQE.設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

(1)在整個(gè)運(yùn)動(dòng)過程中,設(shè)△ABC與△PQE重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式以及相應(yīng)的自變量t的取值范圍;
(2)當(dāng)點(diǎn)D在線段AB上時(shí),連接AQ、AP,是否存在這樣的t,使得△APQ成為等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說明理由;
(3)當(dāng)t=4秒時(shí),以PQ為斜邊在PQ右側(cè)作等腰直角三角形PQF,將四邊形PEQF繞點(diǎn)P旋轉(zhuǎn),PE與線段AB相交于點(diǎn)M,PF與線段AC相交于點(diǎn)N.試判斷在這一旋轉(zhuǎn)過程中,四邊形PMAN的面積是否發(fā)生變化?若發(fā)生變化,求出四邊形PMAN的面積y與PM的長(zhǎng)x之間的函數(shù)關(guān)系式以及相應(yīng)的自變量x的取值范圍;若不發(fā)生變化,求出此定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

把一個(gè)三角形分割成幾個(gè)小正三角形,有兩種簡(jiǎn)單的“基本分割法”.
基本分割法1:如圖①,把一個(gè)正三角形分割成4個(gè)小正三角形,即在原來1個(gè)正三角形的基礎(chǔ)上增加了3個(gè)正三角形.
基本分割法2:如圖②,把一個(gè)正三角形分割成6個(gè)小正三角形,即在原來1個(gè)正三角形的基礎(chǔ)上增加了5個(gè)正三角形.

請(qǐng)你運(yùn)用上述兩種“基本分割法”,解決下列問題:
(1)把圖③的正三角形分割成9個(gè)小正三角形;
(2)把圖④的正三角形分割成10個(gè)小正三角形;
(3)把圖⑤的正三角形分割成11個(gè)小正三角形;
(4)把圖⑥的正三角形分割成12個(gè)小正三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,為估算學(xué)校的旗桿的高度,身高1.6米的小紅同學(xué)沿著旗桿在地面的影子AB由A向B走去,當(dāng)她走到點(diǎn)C處時(shí),她的影子的頂端正好與旗桿的影子的頂端重合,此時(shí)測(cè)得AC=2m,BC=8m,則旗桿的高度是( 。
A.6.4mB.7mC.8mD.9 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

直線l1∥l2∥l3,且l1與l2的距離為1,l2與l3的距離為3,把一塊含有45°角的直角三角形如圖放置,頂點(diǎn)A,B,C恰好分別落在三條直線上,AC與直線l2交于點(diǎn)D,則線段BD的長(zhǎng)度為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC是一張銳角三角形的硬紙片,AD是邊BC上的高,BC=40 cm,AD=30 cm,從這張硬紙片上剪下一個(gè)長(zhǎng)HG是寬HE的2倍的矩形EFGH,使它的一邊EF在BC上,頂點(diǎn)G、H分別在AC、AB上,AD與HG的交點(diǎn)為M. 求矩形的長(zhǎng)與寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小張用手機(jī)拍攝得到甲圖,經(jīng)放大后得到乙圖,甲圖中的線段AB在乙圖中的對(duì)應(yīng)線段是(  )
A.FGB.FHC.EHD.EF

查看答案和解析>>

同步練習(xí)冊(cè)答案