某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關(guān)系,其中整數(shù)k使式子有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價-年總開支).當(dāng)銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?
【答案】分析:(1)弄清題意和題目中的數(shù)量關(guān)系,(2)根據(jù)題意列出不等式組或方程,(3)解答.
解答:解:(1)由
∴-1≤k≤1
∴k=1或k=-1(1分)
當(dāng)k=1時,,年銷售量隨售價x增大而增大,不合.
∴-1,y=-x+b(2分)
把x=60,y=50000件=5萬件代入,5=-×60+b,b=8
∴y=-x+8(3分)

(2)z=yx-40y-120=(-x+8)(x-40)-120=-x2+10x-440=-(x-100)2+60(4分)
∴當(dāng)x=100元時,年獲利最大值為60萬元.(5分)

(3)令z=40,得40=-x2+10x-440
整理得x2-200x+9600=0(6分)
解得:x1=80,x2=120.(7分)

由圖象可知,(畫圖并標(biāo)上數(shù)據(jù)1分)要使年獲利不低于40萬元,銷售單價應(yīng)在80元到120元之間,(說明此點1分)又因為銷售單價越低,銷售量越大,所以要使銷售量最大,又要使年獲利不低于40萬元,則銷售單價應(yīng)定為80元.(說明此點1分)(10分)
點評:本題信息量較大,在考查提取、篩選信息,分析、解決實際問題等能力的同時,培養(yǎng)了同學(xué)們數(shù)形結(jié)合的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關(guān)系y=
1
20k
x+b
,其中整數(shù)k使式子
k+1
+
1-k
有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價-年總開支).當(dāng)銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(19):2.6 何時獲得最大利潤(解析版) 題型:解答題

某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關(guān)系,其中整數(shù)k使式子有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價-年總開支).當(dāng)銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》?碱}集(19):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關(guān)系,其中整數(shù)k使式子有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價-年總開支).當(dāng)銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(21):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關(guān)系,其中整數(shù)k使式子有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價-年總開支).當(dāng)銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(20):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某通信器材公司銷售一種市場需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價為40元,每年銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計120萬元.在銷售過程中發(fā)現(xiàn),年銷售量y(萬件)與銷售單價x(元)之間存在著一次函數(shù)關(guān)系,其中整數(shù)k使式子有意義.經(jīng)測算,銷售單價60元時,年銷售量為50000件.
(1)求出這個函數(shù)關(guān)系式;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利z(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價-年總開支).當(dāng)銷售單價x為何值時,年獲利最大并求這個最大值;
(3)若公司希望該種產(chǎn)品一年的銷售獲利不低于40萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案