【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號).
【答案】(1)60(2)(60﹣20)
【解析】
試題分析:(1)根據(jù)題意得:BD∥AE,從而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得兩建筑物底部之間水平距離BD的長度為60米;
(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,根據(jù)AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的長.
試題解析:(1)根據(jù)題意得:BD∥AE,
∴∠ADB=∠EAD=45°,
∵∠ABD=90°,
∴∠BAD=∠ADB=45°,
∴BD=AB=60,
∴兩建筑物底部之間水平距離BD的長度為60米;
(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,
∴AF=BD=DF=60,
在Rt△AFC中,∠FAC=30°,
∴CF=AFtan∠FAC=60×=20,
又∵FD=60,
∴CD=60﹣20,
∴建筑物CD的高度為(60﹣20)米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,完成下列推理過程.
已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO.
證明:CF∥DO.
證明:∵DE⊥AO,BO⊥AO(已知)
∴∠DEA=∠BOA=90°( )
∴DE∥BO( )
∴∠EDO=∠DOF( )
又∵∠CFB=∠EDO( ④ )
∴∠DOF=∠CFB( ⑤ )
∴CF∥DO( ⑥ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目 (被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請將兩個統(tǒng)計圖補充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請估計該校喜愛電視劇節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把分別標(biāo)有數(shù)字2,3,4,5的四個小球放入A袋,把分別標(biāo)有數(shù)字, , 的三個小球放入B袋,所有小球的形狀、大小、質(zhì)地均相同,A、B兩個袋子不透明.
(1)如果從A袋中摸出的小球上的數(shù)字為3,再從B袋中摸出一個小球,兩個小球上的數(shù)字互為倒數(shù)的概率是 ;
(2)小明分別從A,B兩個袋子中各摸出一個小球,請用樹狀圖或列表法列出所有可能出現(xiàn)的結(jié)果,并求這兩個小球上的數(shù)字互為倒數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com