將矩形紙片分別沿兩條不同的直線剪兩刀,使剪得的三塊紙片恰能拼成一個三角形(不能有重疊和縫隙).圖1中提供了一種剪拼成等腰三角形的示意圖.

         

圖1                   圖2    

     

(1)    請?zhí)峁┝硪环N剪拼成等腰三角形的方式,并在圖2中畫出示意圖;

     

圖3                 備用圖 

(2)以點為原點,所在直線為軸建立平面直角坐標系(如圖),點的坐標為.若剪拼后得到等腰三角形,使點、軸上(上方),點在邊上(不與、重合).設直線的解析式為),則的值為        ,的取值范圍是         .(不要求寫解題過程).

解:(1)答案不唯一,例如:

   .………………………2分

(2)的值為 ,,.(答對一個給2分,答對兩個給3分)……………6分

的取值范圍是.…………………………………………8分

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•豐臺區(qū)一模)將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).
小明的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標為(5,8),直線PM的解析式為y=kx+b,則所有滿足條件的k的值為
8
5
,
4
3
或2
8
5
,
4
3
或2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).
小明的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標為(5,8),直線PM的解析式為y=kx+b,則所有滿足條件的k的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省常州市二十四中中考數(shù)學模擬試卷(C)(解析版) 題型:解答題

將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).
小明的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標為(5,8),直線PM的解析式為y=kx+b,則所有滿足條件的k的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年北京市豐臺區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).
小明的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標為(5,8),直線PM的解析式為y=kx+b,則所有滿足條件的k的值為______.

查看答案和解析>>

同步練習冊答案