【題目】已知圓柱的側(cè)面積是20π cm2 , 高為5cm,則圓柱的底面半徑為 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若順次連接四邊形ABCD各邊的中點所得四邊形是矩形,則四邊形ABCD一定滿足( )
A.對角線相等
B.對角線互相平分
C.對角線互相垂直
D.對角線相等且相互平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=90°,E為BC上一點,A點和E點關(guān)于BD對稱,B點、C點關(guān)于DE對稱,求∠ABC和∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點O為原點,平行于x軸的直線與拋物線L:相交于A,B兩點(點B在第一象限),點D在AB的延長線上.
(1)已知a=1,點B的縱坐標(biāo)為2.
①如圖1,向右平移拋物線L使該拋物線過點B,與AB的延長線交于點C,求AC的長.
②如圖2,若BD=AB,過點B,D的拋物線L2,其頂點M在x軸上,求該拋物線的函數(shù)表達(dá)式.
(2)如圖3,若BD=AB,過O,B,D三點的拋物線L3,頂點為P,對應(yīng)函數(shù)的二次項系數(shù)為a3,過點P作PE∥x軸,交拋物線L于E,F(xiàn)兩點,求的值,并直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線的頂點M的坐標(biāo)為(﹣1,﹣4),且與x軸交于點A,點B(點A在點B的左邊),與y軸交于點C.
(1)填空:b= ,c= ,直線AC的解析式為 ;
(2)直線x=t與x軸相交于點H.
①當(dāng)t=﹣3時得到直線AN(如圖1),點D為直線AC下方拋物線上一點,若∠COD=∠MAN,求出此時點D的坐標(biāo);
②當(dāng)﹣3<t<﹣1時(如圖2),直線x=t與線段AC,AM和拋物線分別相交于點E,F(xiàn),P.試證明線段HE,EF,F(xiàn)P總能組成等腰三角形;如果此等腰三角形底角的余弦值為,求此時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點B坐標(biāo)為(6,6),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,當(dāng)G點在何位置時四邊形AEBD是矩形?請說明理由并求出點H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解被拆遷236戶家庭對拆遷補償方案是否滿意,小明利用周末調(diào)查了其中的50戶家庭,有32戶對方案表示滿意,在這一調(diào)查中,樣本容量為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com