【題目】某廠有甲、乙、丙三個蓄水池,已知甲蓄水池的蓄水量x是從3萬噸至6萬噸,乙蓄水池的蓄水量y萬噸與甲蓄水池蓄水量x萬噸之間的關系是: ,丙蓄水池的蓄水量的3倍恰好是甲蓄水池的蓄水量與乙蓄水池的蓄水量的積.問:
(1)若丙蓄水池的蓄水量最大為22萬噸,當甲蓄水池的蓄水量為6噸時, 丙蓄水池能否容納?為什么?
(2)求丙蓄水池的蓄水量z萬噸與甲蓄水池蓄水量x萬噸之間的關系?
(3)蓄水池管理員在觀察三個蓄水池蓄水量的記錄時發(fā)現,在整個蓄水過程中, 丙蓄水池的蓄水量多次出現整數萬噸的情況,你能說出共出現過多少次?分別是多少嗎?
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD 中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與B,C重合),CN⊥DM,CN與AB交于點N ,連接OM,ON,MN .下列五個結論:①△CNB≌△DMC ;②△CON≌△DOM ;③△OMN≌△OAD ;④ ;⑤若AB=2,則 的最小值是 ,其中正確結論的個數是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)將兩條寬度一樣的矩形紙條如圖交叉,請判斷重疊部分是一個什么圖形?并證明你的結論。
(2) 若兩張矩形紙條的長度均為8,寬度均為2,請求出重疊部分的圖形的周長的最大值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=6,DC=7,點H為AD上一點,并且AH=2,點E為AB上一動點,以HE為邊長作菱形HEFG,并且使點G在CD邊上,連接CF
(1)如圖1,當DG=2時,求證:四邊形EFGH為正方形;
(2)如圖2,當DG=6時,求△CGF的面積;
(3)當DG的長度為何值時,△CGF的面積最小,并求出△CGF面積的最小值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)所示,將一個腰長為2等腰直角△BCD和直角邊長為2、寬為1的直角△CED拼在一起.現將△CED繞點C順時針旋轉至△CE’D’,旋轉角為a.
(1)如圖(2),旋轉角a=30°時,點D′到CD邊的距離D’A=______.求證:四邊形ACED′為矩形;
(2)如圖(1),△CED繞點C順時針旋轉一周的過程中,在BC上如何取點G,使得GD’=E’D;并說明理由.
(3)△CED繞點C順時針旋轉一周的過程中,∠CE’D=90°時,直接寫出旋轉角a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現在,某商場進行促銷活動,出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.
(1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?
(2)小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?
(3)小張按合算的方案,把這臺冰箱買下,如果紅旗商場還能盈利25%,這臺冰箱的進價是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上☆○☆,B組的卡片上分別畫上☆○○,如圖1所示.
(1)若將卡片無標記的一面朝上擺在桌上,再分別從兩組卡片中隨機各抽取一張,求兩張卡片上標記都是☆的概率(請用畫樹形圖法或列表法求解)
(2)若把A,B兩組卡片無標記的一面對應粘貼在一起得到3張卡片,其正反面標記如圖2所示,將卡片正面朝上擺放在桌上,并用瓶蓋蓋住標記.若揭開蓋子,看到的卡片正面標記是☆后,猜想它的反面也是☆,求猜對的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O是菱形ABCD對角線AC與BD的交點,CD=5cm,OD=3cm;過點C作CE∥DB,過點B作BE∥AC,CE與BE相交于點E.
(1)求OC的長;
(2)求四邊形OBEC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com