【題目】在一個口袋中有4個完全相同的小球,把它們分別標(biāo)號為1、2、3、4,隨機摸取一個小球然后放回,再隨機地摸取一個小球.
(1)采用樹狀圖法(或列表法)列出兩次摸取小球出現(xiàn)的所有可能結(jié)果,并回答摸取兩球出現(xiàn)的所以可能結(jié)果共有幾種;
(2)求兩次摸取的小球標(biāo)號相同的概率;
(3)求兩次摸取的小球標(biāo)號的和等于4的概率;
(4)求兩次摸取的小球標(biāo)號的和是2的倍數(shù)或3的倍數(shù)的概率.

【答案】
(1)解:畫樹狀圖得:

則共有16種等可能的結(jié)果。


(2)解:∵兩次摸取的小球標(biāo)號相同的有4種情況,

∴兩次摸取的小球標(biāo)號相同的概率為:4/16=1/4。


(3)解:∵兩次摸取的小球標(biāo)號的和等于4的有3種情況,

∴兩次摸取的小球標(biāo)號的和等于4的概率為:3/16。


(4)解:∵兩次摸取的小球標(biāo)號的和是2的倍數(shù)或3的倍數(shù)的有10種情況,

∴兩次摸取的小球標(biāo)號的和是2的倍數(shù)或3的倍數(shù)的概率為:10/16=5/8。


【解析】(1)抓住關(guān)鍵的已知條件(隨機摸取一個小球然后放回,再隨機地摸取一個小球),列出樹狀圖,求出所有可能的結(jié)果數(shù)即可。
(2)先求出兩次摸取的小球標(biāo)號相同的情況數(shù),再根據(jù)概率公式計算即可。
(3)先求出兩次摸取的小球標(biāo)號的和等于4的情況數(shù),再根據(jù)概率公式計算即可。
(4)先求出兩次摸取的小球標(biāo)號的和是2的倍數(shù)或3的倍數(shù)的情況數(shù),再根據(jù)概率公式計算即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形 中, , ,點 從點 出發(fā),以 的速度沿 向點 運動,設(shè)點 的運動時間為 秒:
(1) .(用 的代數(shù)式表示)


(2) 當(dāng) 為何值時,
(3)當(dāng)點 從點 開始運動,同時,點 從點 出發(fā),以 v 的速度沿 向點 運動,是否存在這樣的v 值,使得 全等?若存在,請求出 v的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系 中, 是坐標(biāo)原點。已知A(0, ),B(1,0),C(6, ),有一拋物線恰好經(jīng)過這三點.
(1)求該拋物線解析式;
(2)若拋物線交 軸的另一交點為D,那么拋物線上是否存在一點P,使得 ,若存在,求出P的坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線 經(jīng)過坐標(biāo)原點,且當(dāng) 時, y隨x的增大而減小.
(1)求拋物線的解析式;
(2)如下圖,設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作AB x軸于點B, DC x軸于點C.

①當(dāng) BC=1時,直接寫出矩形ABCD的周長;
②設(shè)動點A的坐標(biāo)為(a, b),將矩形ABCD的周長L表示為a的函數(shù),并寫出自變量的取值范圍,判斷周長是否存在最大值,如果存在,求出這個最大值,并求出此時點A的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,△ABC的頂點都在格點上,點C坐標(biāo)(0,-1).

(1)①作出△ABC 關(guān)于原點對稱的△A1B1C1 , 并寫出點A1的坐標(biāo);
②把△ABC 繞點C逆時針旋轉(zhuǎn)90°,得△A2B2C2 , 畫出△A2B2C2 , 并寫出點A2的坐標(biāo);
(2)直接寫出△A2B2C2的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計要求,其中需要長為0.8米的鋼管100根,還需要長為2.5米的鋼管32根,兩種長度的鋼管粗細(xì)必須相同;并要求這些用料不能是焊接而成的.經(jīng)市場調(diào)查,鋼材市場中符合這種規(guī)格的鋼管每根長均為6米.

1)試問:把一根長為6米的鋼管進(jìn)行裁剪,有下面幾種方法,

請完成填空(余料作廢)

方法①:只裁成為0.8米的用料時,最多可裁7根;

方法②:先裁下12.5米長的用料,余下部分最多能裁成為0.8米長的用料 根;

方法③:先裁下22.5米長的用料,余下部分最多能裁成為0.8米長的用料1 根.

2)分別用(1)中的方法②和方法③各裁剪多少根6米長的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料;

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要6米長的鋼管與(2)中根數(shù)相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了出行方便,現(xiàn)在很多家庭都購買了小汽車.又由于能源緊張和環(huán)境保護,石油的市場價格常常波動.為了在價格的波動中盡可能減少損失,常常有兩種加油方案.

方案一:每次加50元的油.方案二:每次加50升的油.

請同學(xué)們以2次加油為例(第一次油價為a/升,第二次油價為b/升,a0,b0ab),計算這兩種方案中,哪種加油方案更實惠便宜(平均單價小的便宜)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對稱軸是直線x=1,有以下四個結(jié)論:
①abc>0;②b2-4ac>0;③b=-2a;④a+b+c>2.其中正確的是 (填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公司投資750萬元,成功研制出一種市場需求量較大的產(chǎn)品,并再投入資金1750萬元進(jìn)行相關(guān)生產(chǎn)設(shè)備的改進(jìn).已知生產(chǎn)過程中,每件產(chǎn)品的成本為60元.在銷售過程中發(fā)現(xiàn),當(dāng)銷售單價定為120元時,年銷售量為24萬件;銷售單價每增加10元,年銷售量將減少1萬件.設(shè)銷售單價為x(元)(x>120),年銷售量為y(萬件),第一年年獲利(年獲利=年銷售額﹣生產(chǎn)成本)為z(萬元).
(1)求出y與x之間,z與x之間的函數(shù)關(guān)系式;
(2)該公司能否在第一年收回投資.

查看答案和解析>>

同步練習(xí)冊答案