(1)一張矩形紙片OABC平放在平面直角坐標系內,O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
①如圖,將紙片沿CE對折,點B落在x軸上的點D處,求點D的坐標;
②在①中,設BD與CE的交點為P,若點P,B在拋物線y=x2+bx+c上,求b,c的值;
③若將紙片沿直線l對折,點B落在坐標軸上的點F處,l與BF的交點為Q,若點Q在②的拋物線上,求l的解析式.
(2)一張矩形紙片OABC平放在平面直角坐標系內,O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
①求直線AC的解析式;
②若M為AC與BO的交點,點M在拋物線y=-數(shù)學公式x2+kx上,求k的值;
③將紙片沿CE對折,點B落在x軸上的點D處,試判斷點D是否在②的拋物線上,并說明理由.

解:(1)①根據(jù)題意知,CD=CB=OA=5
∵∠COD=90°
∴CD==3
∴D點坐標為(3,0)
②過P作PG⊥x軸于G

據(jù)題知,PG=AB=2,DG=AD=1
∴P點坐標(4,2)
∵點P,B在拋物線y=x2+bx+c上
∴b=-7,c=14
③當點F在x軸上時,過Q作QM⊥x軸于M

同②可知QM=AB=2,則Q點的縱坐標為2
得x2-7x+14=2
∴x=3或x=4
∴Q點的坐標為(3,2)或(4,2)
當Q點坐標為(3,2)時,如圖,OM=3,MA=2,F(xiàn)A=4
AB=4
FA=AB,而l為BF的中垂線
∴點A在l上
∴l(xiāng)的解析式為y=-x+5.
當Q點坐標為(4,2)時,如圖,OM=4,MA=1,OF=3,CF=5,而CB=5;
∴CF=CB
∵l為BF的中垂線
∴點C在l上.
∴l(xiāng)的解析式為y=-x+4.
當點F在y軸上時,可求得Q(,),l與y軸的交點為(0,
∴l(xiāng)的解析式為y=-2x+
綜上所述,l的解析式為y=-x+5或y=-x+4或y=-2x+
(2)①∵OA=5,OC=4,
∴A(5,0),C(0,4);
∴直線AC的解析式為y=-x+4.
②可知:M點坐標為(,2).
由題設知:-2+k•=2.
∴k=
③∵CD=BC=OA=5,OC=4,∠COD=90°
∴OD=3,即D(3,0).
當x=3時,y=-×32+×3=0
∴點D在拋物線上.
分析:(1)①求D點坐標,關鍵是求OD的長,根據(jù)折疊的性質可知:CD=BC=OA,在直角三角形OCD中,根據(jù)OC、CD的長,即可用勾股定理求出OD的值.也就求出了D點的坐標.
②還是根據(jù)折疊的性質求解,根據(jù)折疊的性質不難得出CE垂直平分BD,即P為BD中點,因此P點橫坐標為OD的長加上AD的一半,而P點縱坐標為B點縱坐標的一半,據(jù)此可求出P點坐標.然后將P、B的坐標代入拋物線的解析式中即可求出待定系數(shù)的值.
③由于F點的位置不確定,可分兩種情況:
①當F在x軸上時,Q點縱坐標為B點總坐標的一半,由此可求出Q點縱坐標,將其代入拋物線的解析式中,可求得Q點的坐標.然后根據(jù)Q點坐標,然后根據(jù)Q點坐標去求直線l與坐標軸其他交點的坐標.
②當F在y軸上時,Q點橫坐標為B點橫坐標的一半,可將其代入拋物線的解析式中求出Q點坐標,后同①.(本題也可先求出直線BQ的解析式,由于直線l垂直BQ,那么直線l的斜率和直線BQ的斜率的積為-1,又知直線l過Q點可求出直線l的解析式.)
(2)題較簡單,參照(1)題部分解題過程即可.
①已知OA=5,OC=4故A(5,0),C(0,4)求出直線AC的解析式為y=-x+4.
②可知M點坐標為(,2),設-2+k•=2可求得k值.
③已知CD=BC=OA=5,OC=4,∠COD=90°推出D(3,0).當x=3時,y=-×32+×3=0,得出點D在拋物線上.
點評:本題考查了矩形的性質、二次函數(shù)解析式的確定、圖形的翻折變換等知識,(1)③中要注意F點的位置是坐標軸而不是x軸,因此要分類討論,不要漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

4、如圖,ABCD是一張矩形紙片,點O為矩形對角線的交點,直線MN經過點O交AD于M,交BC于N.
操作:先沿直線MN剪開,并將直角梯形MNCD繞點O旋轉
度后(填入一個你認為正確答案的序號:①90;②180;③270;④360.恰與直角梯形NMAB完全重合;再將重合后的直角梯形MNCD以直線MN為軸翻轉180°后所得的圖形是下列中的
(4)
(填寫正確圖形的代號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,ABCD是一張矩形紙片,點O為矩形對角線的交點.直線MN經過點O交AD于M,交BC于N.操作:先沿直線MN剪開,并將直角梯形MNCD繞點O旋轉
度后(填入一個你認為正確的序號:①90°;②180°;③270°;④360°),恰與直角梯形NMAB完全重合;再將重合后的直角梯形MNCD以直線MN為軸翻轉180°后所得到的圖形是下列中的
D
.(填寫正確圖形的代號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,ABCD是一張矩形紙片,沿過點D的折痕將A角翻折,使得點A落在BC上,折痕交AB于點E,若BC=2AB,則∠A′EB=
30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網把一張矩形紙片(矩形ABCD)按如圖方式折疊,使頂點B和點D重合,折痕為EF.若AB=3cm,BC=5cm,則重疊部分△DEF的面積是( 。
A、7.5cm2B、5.1cm2C、5.2cm2D、7.2cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有一張矩形紙片ABCD,按下面步驟進行折疊:
第一步:如圖①,將矩形紙片ABCD折疊,使點B、D重合,點C落在點C′處,得折痕EF;
第二步:如圖②,將五邊形AEFC′D折疊,使AE、C′F重合,得折痕DG,再打開;
第三步:如圖③,進一步折疊,使AE、C′F均落在DG上,點A、C′落在點A′處,點E、F落在點E′處,得折痕MN、QP.
這樣,就可以折出一個五邊形DMNPQ.
精英家教網
(1)請寫出圖①中一組相等的線段
 
寫出一組即可;
(2)若這樣折出的五邊形DMNPQ,如圖③,恰好是一個正五邊形,當AB=a,AD=b,DM=m時,有下列結論:
①a2-b2=2abtan18°;②m=
a2+b2
•tan18°
;
③b=m+atan18°;④b=
3
2
m+mtan18°

其中,正確結論的序號是
 
把你認為正確結論的序號都填上.

查看答案和解析>>

同步練習冊答案