操作與實踐(7分)
【小題1】(1)如圖,已知△ABC,過點A畫一條平分三角形面積的直線;
【小題2】(2)如圖,已知∥,點E,F(xiàn)在上,點G,H在上,試說明△EGO與△FHO的面積相等;
【小題3】(3)如圖,點M在△ABC的邊上,過點M畫一條平分三角形面積的直線.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年江蘇省洋思中學九年級月考數(shù)學卷 題型:解答題
( 本題滿分12分)
【小題1】(1)動手操作:
如圖①,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點處,折痕為EF,若∠ABE=20°,那么的度數(shù)為 。
【小題2】(2)觀察發(fā)現(xiàn)小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認為△AEF是等腰三角形,你同意嗎?請說明理由
(3)實踐與運用:
將矩形紙片ABCD 按如下步驟操作:將紙片對折得折痕EF,折痕與AD邊交于點E,與BC邊交于點F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點A、點D都與點F重合,展開紙片,此時恰好有MP=MN=PQ(如圖④),求∠MNF的大小。
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆北京通州區(qū)中考模擬數(shù)學卷 題型:解答題
在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當2b<a時,如圖1,在BA上選取點G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點F逆時針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實踐探究
【小題1】正方形FGCH的面積是 ;(用含a, b的式子表示)
【小題2】類比圖1的剪拼方法,請你就圖2—圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.
【小題3】聯(lián)想拓展小明通過探究后發(fā)現(xiàn):當b≤a時,此類圖形都能剪拼成正方形,且所選取的點G的位置在BA方向上隨著b的增大不斷上移.當b>a時(如圖5),能否剪拼成一個正方形?若能,請你在圖5中畫出剪拼成的正方形的示意圖;若不能,簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com