如圖,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.

(1)求A、B、C三點的坐標.
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積.
(3)在軸上方的拋物線上是否存在一點M,過M作MG軸于點G,使以A、M、G三點為頂點的三角形與PCA相似.若存在,請求出M點的坐標;否則,請說明理由.
(1) A(-1,0),B(1,0),C(0,-1);(2)4;(3)(-2,3),(,),(4,15).

試題分析:(1)拋物線與x軸的交點,即當y=0,C點坐標即當x=0,分別令y以及x為0求出A,B,C坐標的值;
(2)四邊形ACBP的面積=△ABC+△ABP,由A,B,C三點的坐標,可知△ABC是直角三角形,且AC=BC,則可求出△ABC的面積,根據(jù)已知可求出P點坐標,可知AP的長度,以及點B到直線的距離,從而求出△ABP的面積,則就求出四邊形ACBP的面積;
(3)假設(shè)存在這樣的點M,兩個三角形相似,根據(jù)題意以及上兩題可知,∠PAC∠和∠MGA是直角,只需證明即可.設(shè)M點坐標,根據(jù)題中所給條件可求出線段AG,CA,MG,CA的長度,然后列等式,分情況討論,求解.
試題解析: (1)令y=0,
得x2-1=0
解得x=±1,
令x=0,得y=-1
∴A(-1,0),B(1,0),C(0,-1);
(2)∵OA=OB=OC=1,
∴∠BAC=∠ACO=∠BCO=45°.
∵AP∥CB,
∴∠PAB=45°.
過點P作PE⊥x軸于E,則△APE為等腰直角三角形,

令OE=A,則PE=A+1,
∴P(A,A+1).
∵點P在拋物線y=x2-1上,
∴A+1=A2-1.
解得A1=2,A2=-1(不合題意,舍去).
∴PE=3.
∴四邊形ACBP的面積S=AB•OC+AB•PE=×2×1+×2×3=4;
(3)假設(shè)存在
∵∠PAB=∠BAC=45°,
∴PA⊥AC
∵MG⊥x軸于點G,
∴∠MGA=∠PAC=90°
在Rt△AOC中,OA=OC=1,
∴AC=
在Rt△PAE中,AE=PE=3,
∴AP=3
設(shè)M點的橫坐標為m,則M(m,m2-1)
①點M在y軸左側(cè)時,則m<-1.

(ⅰ)當△AMG∽△PCA時,有
∵AG=-m-1,MG=m2-1.

解得m1=-1(舍去)m2=(舍去).
(ⅱ)當△MAG∽△PCA時有,

解得:m=-1(舍去)m2=-2.
∴M(-2,3)(10分).
②點M在y軸右側(cè)時,則m>1

(。┊敗鰽MG∽△PCA時有
∵AG=m+1,MG=m2-1

解得m1=-1(舍去)m2=
∴M(,).
(ⅱ)當△MAG∽△PCA時有

解得:m1=-1(舍去)m2=4,
∴M(4,15).
∴存在點M,使以A、M、G三點為頂點的三角形與△PCA相似
M點的坐標為(-2,3),(,),(4,15).
考點: 二次函數(shù)綜合題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

若拋物線的頂點在x軸上,則c的值為
A.1B.-1C.2D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商品的進價為每件50元,售價為每件60元,每個月可賣出200件;如果每件商品的售價每上漲1元.則每個月少賣10件。設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1) 求y與x的函數(shù)關(guān)系式
(2) 每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3) 若每個月的利潤不低于2160元,售價應(yīng)在什么范圍?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

 已知在平面直角坐標系xoy中,二次函數(shù)y=-2x²+bx+c的圖像經(jīng)過點A(-3,0)和點B(0,6)。(1)求此二次函數(shù)的解析式;(2)將這個二次函數(shù)的圖像向右平移5個單位后的頂點設(shè)為C,直線BC與x軸相交于點D,求∠sin∠ABD;(3)在第(2)小題的條件下,連接OC,試探究直線AB與OC的位置關(guān)系,并且說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線y=-x2向上平移2個單位后所得的拋物線表達式是               

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知拋物線的解析式為y=﹣(x+3)2+1,則它的頂點坐標是(  )
A.(﹣3,1)B.(3,1)C.(3,﹣1)D.(1,3)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是(   ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把拋物線y=3x2沿y軸向上平移8個單位,所得拋物線的函數(shù)關(guān)系式為(  )
A.y=3x2+8B.y=3x2-8C.y=3(x+8) 2D.y=3(x-8) 2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖象如圖所示,則點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案