【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像相交于點(diǎn),一次函數(shù)軸相交于點(diǎn),與軸相交于點(diǎn)

1)求的值;

2)點(diǎn)軸正半軸上,且的面積為1,求點(diǎn)坐標(biāo);

3)在(2)的條件下,點(diǎn)是一次函數(shù)上一點(diǎn),點(diǎn)是反比例函數(shù)圖像上一點(diǎn),且點(diǎn)、都在軸上方.如果以、為頂點(diǎn)的四邊形為平行四邊形,請直接寫出點(diǎn)、的坐標(biāo).

【答案】111;(2;(3,,

【解析】

1)將BC坐標(biāo)代入一次函數(shù)解析式即可求出kb的值;

2)先求出點(diǎn)A的坐標(biāo),設(shè)點(diǎn)M的坐標(biāo)為,再根據(jù)的面積為1列出方程求出m的值進(jìn)而得解;

3)由題意可得PQBMPQBM2,設(shè)點(diǎn)Pa2,a1),則可表示點(diǎn)Q的坐標(biāo),利用點(diǎn)Q在反比例函數(shù)圖像上列出方程求解即可.

解:(1)把點(diǎn),,代入函數(shù)得,

由題意得解得

2)由題意得,點(diǎn)在一次函數(shù)和反比例函數(shù)上,

,

化簡得,,解得,,

因?yàn)辄c(diǎn)在第一象限所以

所以點(diǎn)坐標(biāo)為

設(shè):點(diǎn)坐標(biāo)為

解得,

點(diǎn)坐標(biāo)為

3)由(2)得,點(diǎn)M

BM2,

∵以、、為頂點(diǎn)的四邊形為平行四邊形,且點(diǎn)、都在軸上方,

PQBMPQBM2,

設(shè)點(diǎn)Pa,a1),

當(dāng)點(diǎn)Q在點(diǎn)P右側(cè)時,則點(diǎn)Q為(a2,a1

將(a2a1)代入

(a2)(a1)2

解得,a0a=-3(舍去)

當(dāng)點(diǎn)Q在點(diǎn)P左側(cè)時,則點(diǎn)Q為(a2,a1

將(a2,a1)代入

(a2)(a1)2

解得,aa(舍去)

,

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,數(shù)軸上標(biāo)出若干個點(diǎn),每相鄰兩點(diǎn)相距一個單位長度,點(diǎn)A,B,C,D對應(yīng)的數(shù)分別是數(shù)a,b,c,d,且d-2a=10,那么數(shù)軸的原點(diǎn)應(yīng)是( )

A.點(diǎn)A
B.點(diǎn)B
C.點(diǎn)C
D.點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC的角平分線BD,CE相交于點(diǎn)P.

(1)如果A=80,求BPC= .

(2)如圖,過點(diǎn)P作直線MNBC,分別交ABAC于點(diǎn)MN,試求MPB+NPC的度數(shù)(用含A的代數(shù)式表示) .

(3)將直線MN繞點(diǎn)P旋轉(zhuǎn)。

(i)當(dāng)直線MNAB,AC的交點(diǎn)仍分別在線段ABAC上時,如圖,試探索MPBNPC,A三者之間的數(shù)量關(guān)系,并說明你的理由。

(ii)當(dāng)直線MNAB的交點(diǎn)仍在線段AB,而與AC的交點(diǎn)在AC的延長線上時,如圖,試問(i)MPB,NPCA三者之間的數(shù)量關(guān)系是否仍然成立?若成立,請說明你的理由;若不成立,請給出MPB,NPC,A三者之間的數(shù)量關(guān)系,并說明你的理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)踐操作:如圖,在 中,∠ABC=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法):

(1)作∠BCA的角平分線,交AB于點(diǎn)O;
(2)以O(shè)為圓心,OB為半徑作圓.
綜合運(yùn)用:在你所作的圖中,
(3)AC與⊙O的位置關(guān)系是(直接寫出答案);
(4)若BC=6,AB=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 中,∠A=160°,∠B=50°,∠ADC、∠BCD 的平分線相交于點(diǎn)E,則∠CED=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN

1)將兩個矩形疊合成如圖10,求證:四邊形ABCD是菱形;

2)若菱形ABCD的周長為20,BE=3,求矩形BEDG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)1陰影面積可表示為_______,圖2陰影面積可表示為_____.

請利用圖形面積的不同表示方法,寫出一個關(guān)于的恒等式_______.

(2)如圖所示的長方形或正方形三類卡片各有若干張,請你用這些卡片,拼成一個長方形或正方形圖形。驗(yàn)證公式(a+b)2=a2+2ab+b2.

(3)是一個長為2m、寬為2m的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖的形狀拼成一個正方形。

請用兩種不同的方法求圖中陰影部分的面積:

方法1___________________

方法2__________________

觀察圖寫出下列三個代數(shù)式之間的等量關(guān)系:

,

_____________________________

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:

,,則________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,四邊形ABCD中,∠B=∠D90°,AE平分∠DAB,AE//CF

(1)說明:CF平分∠BCD;

(2)作△ADE的高DM,若AD=8,DE=6,AE=10,求DM的長。

查看答案和解析>>

同步練習(xí)冊答案