【題目】如圖,∠1+∠2+∠3+∠4+∠5+∠6=度.
【答案】360
【解析】解:如圖 , 根據(jù)三角形中內(nèi)角和為180°,
有∠HGT=180°﹣(∠1+∠2),∠GHT=180°﹣(∠5+∠6),∠GTH=180°﹣(∠3+∠4),
∴∠HGT+∠GHT+∠GTH=540°﹣(∠1+∠2+∠3+∠4+∠5+∠6),
∵∠HGT+∠GHT+∠GTH=180°,
∴180°=540°﹣(∠1+∠2+∠3+∠4+∠5+∠6),
∴∠1+∠2+∠3+∠4+∠5+∠6=360°,
故答案為:360.
根據(jù)三角形中內(nèi)角和為180°,有∠HGT=180°﹣(∠1+∠2),∠GHT=180°﹣(∠5+∠6),∠GTH=180°﹣(∠3+∠4),三式相加,再利用三角形中內(nèi)角和為180°即可求得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx﹣3交x軸于B、C兩點(diǎn),且B的坐標(biāo)為(﹣2,0)直線y=mx+n過點(diǎn)B和拋物線上另一點(diǎn)A(4,3)
(1)求拋物線和直線的解析式;
(2)若點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,過P作PQ∥x軸,且PQ=4(點(diǎn)Q在P點(diǎn)右側(cè)).以PQ為一邊作矩形PQEF,且點(diǎn)E在直線AB上.求矩形PQEF的最大值.并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的結(jié)論下,連接AP、BP,設(shè)QE交于x軸于點(diǎn)D,現(xiàn)即將矩形PQEF沿射線DB以每秒1個(gè)單位長度的速度平移,當(dāng)點(diǎn)D到達(dá)點(diǎn)B時(shí)停止,記平移時(shí)間為t,平移后的矩形PQEF為P′Q′E′F′,且Q′E′分別交直線AB、x軸于N、D′,設(shè)矩形P′Q′E′F′與△ABP的重疊部分面積為s,當(dāng)NA= ND′時(shí),求s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備組織520名學(xué)生進(jìn)行野外考察活動(dòng),行李共有240件.學(xué)校計(jì)劃租用甲、乙兩種型號的汽車共12輛,經(jīng)了解,甲種汽車每輛最多能載50人和15件行李,乙種汽車每輛最多能載40人和25件行李.設(shè)租用甲種汽車輛,你認(rèn)為下列符合題意的不等式組是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北襄陽第20題)
如圖,直線y=ax+b與反比例函數(shù)y=(x>0)的圖象交于A(1,4),B(4,n)兩點(diǎn),與x軸,y軸分別交干C,D兩點(diǎn).
(1)m= ,n= ;若M(xl,y1),N(x2,y2)是反比例函數(shù)圖象上兩點(diǎn),且0<xl<x2,則yl y2(填“<”或“=”或“>”);
(2)若線段CD上的點(diǎn)P到x軸,y軸的距離相等.求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A.B.C分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點(diǎn),且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,P為其底角平分線的交點(diǎn),將△BCP沿CP折疊,使B點(diǎn)恰好落在AC邊上的點(diǎn)D處,若DA=DP,則∠A的度數(shù)為( )
A.20°
B.30°
C.32°
D.36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:已知在△ABC中,邊AB上的動(dòng)點(diǎn)D由A向B運(yùn)動(dòng)(與A,B不重合),同時(shí)點(diǎn)E由點(diǎn)C沿BC的延長線方向運(yùn)動(dòng)(E不與C重合),連接DE交AC于點(diǎn)F,點(diǎn)H是線段AF上一點(diǎn),求的值.
(1)初步嘗試
如圖(1),若△ABC是等邊三角形,DH⊥AC,且點(diǎn)D、E的運(yùn)動(dòng)速度相等,小王同學(xué)發(fā)現(xiàn)可以過點(diǎn)D作DG∥BC交AC于點(diǎn)G,先證GH=AH,再證GF=CF,
從而求得的值為 .
(2)類比探究
如圖(2),若△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且點(diǎn)D,E的運(yùn)動(dòng)速度之比是︰1,求的值.
(3)延伸拓展
如圖(3)若在△ABC中,AB=AC,∠ADH=∠BAC=36°,記=m,且點(diǎn)D、E的運(yùn)動(dòng)速度相等,試用含m的代數(shù)式表示的值(直接寫出果,不必寫解答過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com