如圖,從⊙O外一點A作⊙O的切線AB、AC,切點分別為B、C,且⊙O的直經(jīng)BD=6,連接CD、AO、BC,且AO與BC相交于點E.
(1)求證:CD∥AO;
(2)設CD=x,AO=y,求y與x之間的函數(shù)關系式,并直接寫出自變量x的取值范圍;
(3)請閱讀下方資源鏈接內(nèi)容.在(2)的基礎上,若CD、AO的長分別為一元二次方程x2-(4m+1)x+4m2+2=0的兩個實數(shù)根,求AB的長.

【答案】分析:(1)連接OC,由AB與AC都為圓的切線,根據(jù)切線的性質(zhì)AC垂直于OC,AB與OB垂直,根據(jù)垂直的定義得到兩個角為直角,在直角三角形ACO與直角三角形ABO中,由OC=OB,OA為公共邊,利用HL得出三角形ACO與三角形ABO全等,根據(jù)全等三角形的對應邊及對應角相等得到AB=AC,∠1=∠2,根據(jù)三線合一得到AO與BC垂直,又BD為圓O的直徑,根據(jù)直徑所對的圓周角為直角,得到CD與BC垂直,可得出DC與AO都與BC垂直,則AO平行于CD,得證;
(2)由第一問得到CD與AO平行,根據(jù)兩直線平行同位角相等可得出∠3=∠4,再由一對直角相等,利用兩對對應角相等的兩三角形相似,可得出三角形BDC與三角形ABO相似,根據(jù)相似得比例,將各自的邊長代入即可得出y與x的關系式,并根據(jù)直徑為6,圓中的弦長小于等于直徑可得出x的取值范圍;
(3)由CD、AO的長分別為一元二次方程x2-(4m+1)x+4m2+2=0的兩個實數(shù)根,根據(jù)根與系數(shù)的關系表示出xy,根據(jù)第二問得出的y與x的關系式得到xy=18,列出關于m的方程,求出方程的解得到m的值,將m的值代入原方程,求出方程的解,可得出CD及AO的值,由CD=OB得出OB的長,在直角三角形ABO中,由AO及OB的長,利用勾股定理即可求出AB的長.
解答:解:(1)連接OC,…(1分)
∵AB、AC是⊙O的切線,
∴∠ACO=∠ABO=90°,
在Rt△ACO和Rt△ABO中,

∴Rt△ACO≌Rt△ABO(HL),
∴AB=AC,∠1=∠2,
∴AO⊥BC,
∴∠AEC=90°,…(2分)
∵BD是⊙O的直徑,∴∠DCB=90°,
∴∠DCB=∠AEC,
∴CD∥AO;…(3分)

(2)∵CD∥AO,∴∠3=∠4,
∵AB是⊙O的切線,DB是直徑,
∴∠DCB=∠ABO=90°,
∴△BDC∽△AOB,…(4分)
=,即=
∴y=,…(5分)
且自變量x的取值范圍為0<x<6;…(6分)

(3)∵CD、AO的長分別為一元二次方程x2-(4m+1)x+4m2+2=0的兩個實數(shù)根,
∴x•y=4m2+2,…(7分)
又由(2)知y=
∴xy=18,
∴4m2+2=18,
∴m=±2,…(8分)
①當m=2時,原方程可化為x2-9x+18=0,∴x=3或6;
由(2)知x<6,∴只能取x=3,
∴CD=3,AO=6,
在Rt△AOB中,AO=6,OB=3,
∴AB==3;…(9分)
②當m=-2時,原方程可化為x2+7x+18=0,
∵△=72-4×1÷18<0,∴方程無解,…(10分)
綜上,AB的長為
點評:此題考查了切線的性質(zhì),圓周角定理,等腰三角形的性質(zhì),平行線的判定,全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,以及根與系數(shù)的關系,是一道綜合性較強的題,要求學生掌握知識要全面.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,從⊙O外一點P引⊙O的兩條切線PA、PB,切點分別是A、B,若PA=8cm,C是
AB
上的一個動點(點C與A、B兩點不重合),過點C作⊙O的切線,分別交PA、PB于點D、E,則△PED的周長是
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,從⊙O外一點A作⊙O的切線AB、AC,切點分別為B、C,且⊙O直徑BD=6,連接CD、AO.
(1)求證:CD∥AO;
(2)設CD=x,AO=y,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)若AO+CD=11,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,從圓外一點P引圓的切線PA,點A為切點,割線PDB交⊙O于點D、B.已知PA=12,PD=8,則S△ABP:S△DAP=
9:4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,從⊙O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC.若∠A=26°,則∠ACB的度數(shù)為
32°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,從⊙O外一點P引⊙O的兩條切線PA、PB,切點分別是A、B,若PA=5cm,C是
AB
上的一個動點(點C與A、B兩點不重合),過點C作⊙O的切線,分別交PA、PB于點D、E,求△PED的周長是多少?

查看答案和解析>>

同步練習冊答案