【題目】如圖,是一圓錐的左視圖,根據(jù)圖中所標數(shù)據(jù),圓錐側(cè)面展開圖的扇形圓心角的大小為( )
A.90°
B.120°
C.135°
D.150°
【答案】B
【解析】解:∵圓錐的底面半徑為3,
∴圓錐的底面周長為6π,
∵圓錐的高是6 ,∴圓錐的母線長為 =9,
設(shè)扇形的圓心角為n°,
∴ =6π,
解得n=120.
答:圓錐的側(cè)面展開圖中扇形的圓心角為120°.
故選B.
根據(jù)圓錐的底面半徑得到圓錐的底面周長,也就是圓錐的側(cè)面展開圖的弧長,根據(jù)勾股定理得到圓錐的母線長,利用弧長公式可求得圓錐的側(cè)面展開圖中扇形的圓心角.本題考查了圓錐的計算,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把的扇形的弧長等于圓錐底面周長作為相等關(guān)系,列方程求解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,長方形的兩邊長分別為m+3,m+13;如圖2的長方形的兩邊長分別為m+5,m+7.(其中m為正整數(shù))
(1)寫出兩個長方形的面積S1,S2,并比較S1,S2的大;
(2)現(xiàn)有一個正方形的周長與圖1中的長方形的周長相等.試探究該正方形的面積與長方形的面積的差是否是一個常數(shù),如果是,求出這個常數(shù);如果不是,說明理由.
(3)在(1)的條件下,若某個圖形的面積介于S1,S2之間(不包括S1,S2)且面積為整數(shù),這樣的整數(shù)值有且只有19個,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“愛我永州”中學生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說法中錯誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點O,OC=1,以點O為圓心OC為半徑作半圓.
(1)求證:AB為⊙O的切線;
(2)如果tan∠CAO= ,求cosB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請在網(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對稱圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知k=,且+n2+9=6n,則關(guān)于自變量x的一次函數(shù)y=kx+m+n的圖象一定經(jīng)過第( )象限.
A.一、二
B.二、三
C.三、四
D.一、四
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰三角形ABC在平面直角坐標系中的位置如圖所示,已知點A(﹣6,0),點B在原點,CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動順時針翻轉(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點C的橫坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(1,2),B(0,4).
(1)求此函數(shù)的解析式.
(2)求原點到直線AB的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com